
I

~~;

""
l

,-
~:'!

;'..
!

" ·,""~~PROGRAM PROTECTION MANUAL '::;i
<~

.. · ~ ..~~

<.~FOR THE C- 64
" n
"

·...... 1:'4
~

'J
"AiVOLUME II , ..

:J
.','
1

..: J'-"
',,~

" l
:.,~

'.~
:~1," l'~',$f
;'$!
.'\i:.:,
,~

~ " ,,;':":'i~
~;, -";~M.

:','. \~~~,~\
.2;:
.,'~~

·':1'

" .r".,

-<;~.

LEARN THE SECRETS OF SOFTWARE PROTECTION. ,O!

<~
,.),,

} ~>

--..v.
;l

" ~

COPYRIGHT 1985 1
"BY CSM SOFTWARE, INC.
I

~:j

r.ALL RIGHTS RESERVED

/

'" ·e'\... , ,-. --<~/...... ~. ,.-W'"...#-- "ti> -"-.~.j;.·-:i:;;: ~_ <:* ,:.~,:4.->' _~_i;" ---- _." - ~~-- ..:,-~~ --- -<_.~-

INTRODUCTION

This manual is designed for the computer user or programmer who
has some background in programming, machine language and
program protection. We are not going to assume a high level of
expertise. We only expect that the reader has read and become
familiar with the information presented in the PROGRAM
PROTECTION MANUAL FOR THE C-64 (VOLUME I).

The best way to get the most out of this book is to keep the
PROGRAM PROTECTION MANUAL FOR THE C-64 (VOLUME I) handy for
reference. One cannot be expected to remember all the
techniques described in the first manual, so feel free to refer
back to it for information when needed.

The information presented herein will be for illustrative
purposes only. The routines featured in this manual are
original and contain code similar to that in actual use. Don't
be surprised if you see some programmers using our routines in
the near future, they've done it before.

The first few chapters are a review of some very important
aspects of computer software. If the information contained in
these chapters seems familiar, that's because it is mainly from
the first manual on program protection. Please take the time to
re-read this information. It is very important!

The rest of the manual contains all new information, presented
in a logical manner. Read this book from front to back, first
chapter to last. The information presented in the earlier
chapters is used as building blocks for the later chapters.
Take your time when reading the chapters, try to understand
each and every concept before going on. It has taken months to
compile the information contained in this manual so don't feel
bad if you don't understand all of it the first time through.

We have called upon many different experts to help us write
this manual. We would like to give special credit to these fine
folks for all their help. Without their help this manual could
not have been written.

SPECIAL THANKS TO THE FOLLOWING
MANUAL - YOU FOLKS DID A GREAT

PEOPLE
JOB!!

FOR CONTRIBUTING TO THIS

BILL MELLON DAVE JOHNSON

CAYE GIRGENTI P. J. MYERS

PH IL SLAYMAKER MIKE POWERS

T. N. SIMSTAD

P.S. Thanks to
writing this.

my wife and kids for putting up with me while

i (
!

COPYRIGHT NOTICE

PROGRAM PROTECTION MANUAL FOR THE C-64 VOLUME II
COPYRIGHT 1985 (C) BY CSM SOFTWARE INC
ALL RIGHTS RESERVED

This manual and the computer programs on the accompanying floppy disks, which are
described by this manual, are copyrighted and contain proprietary information
belonging to CSM SOFTWARE INC.

No one may give or sell copies of this manual or the accompanying disks or of the
listings of the programs on the disks to any person or institution, except as
provided for by the written agreement with CSM SOFTWARE INC.

No one may copy, photocopy, reproduce, translate this manual or reduce it to
machine readable form, in whole or in part, without the prior written consent of
CSM SOFTWARE INC.

WARRANTY AND LIABILITY

Neither CSM SOFTWARE INC., nor any dealer or distributor makes any warranty,
express or implied, with respect to this manual, the disk or any related item,
their quality, performance, merchantability, or fitness for any purpose. It is
the responsibility solely of the purchaser to determine the suitability of these
products for any purpose.

In no case will CSM SOFTWARE INC. be held liable for direct, indirect or
incidential damages resulting from any defect or omission in the manual, the disk
or other related items and processes, including, but not limited to, any
interruption of service, loss of business, anticipated profit, or other
consequential damages.

THIS STATEMENT OF LIMITED LIABILITY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. CSM SOFTWARE INC. will not assume any other warranty or liability. Nor
do they authorize any other person to assume any other warranty or liability for
them, in connection with the sale of their products.

UPDATES AND REVISIONS

CSM SOFTWARE INC. reserves the right to correct and/or improve this manual and
the related disk at any time without notice and without responsibility to provide
these changes to prior purchasers of the program.

IMPORTANT NOTICE

THIS PRODUCT IS SOLD SOLELY FOR THE ENTERTAINMENT AND EDUCATION OF THE PURCHASER.
IT IS ILLEGAL TO SELL OR DISTRIBUTE COPIES OF COPYRIGHTED PROGRAMS. THIS PRODUCT
DOES NOT CONDONE SOFTWARE PIRACY NOR DOES IT CONDONE ANY OTHER ILLEGAL ACT.

ii

TABLE OF CONTENTS

1).
2) •

3) •
4) •

5) •
6) •

7>.
8).

9).
10) •

11) •
12) •

13) •
14).

15).
16).

17>.
18) •

19) •
20) .

21) •
22) •

23) .
24).

25) .
26).

27>.
28) .

SOFTWARE LAW .
ARCHIVAL COPIES

COpy PROTECTION ••...•••
EVOLUTION OF COpy PROTECTION ••.

THE FUTURE OF COpy PROTECTION ••.
INTRODUCTION TO MACHINE LANGUAGE

AUTOBOOTS • . . · · . . . · . . .
INTERRUPTS AND RESETS .•..• · . . · . . ·

COMPILERS ..• · · · • •

1

5

8

11

• 17

19

. 35

. 46

• 61

UNDOCUMENTED OPCODES . . · . · ·71

ENCRYPTION TECHNIQUES •. · . · · . . · . • . • 78

PROGRAMMING EPROMS . . · . . · • 88

6510 AND THE PLA · . . · · . · · • 93

GCR RECORDING . · . . · . . . · . . ·103
·
READING GCR ..•..•.•.•.•.•.••.117

WORKING INSIDE THE DISK DRIVE .••••...• 123

STANDARD TRACK FORMAT • .130

CUSTOM DOS ROUTINES. · • 135

CARTRIDGES - EASY •. .159

ADVANCED CARTRIDGES · • • 170

DECRYPTION ...•..•..
THE BACKDOOR APPROACH •

THE DOCTOR'S WAY
TRACING PROGRAMS

PROTECTING YOUR OWN SOFTWARE
ADVANCED MEMORY THEORY •..

EPROM/EEPROM PROGRAMMING (ADVANCED) •
DEF I NIT IONS . • . . . • • . . ~ . •

• • 181

· . 187

· . • . .203

· 21 8

· .233

.239

.265

· .273

iii
(.

(
---..

http:�..�.�.�.�.�.��

--

SOFTWARE LAW

The purpose of this chapter is to inform the user of the C-64
computer what they may and may not do with the programs they
have purchased. I am not a lawyer and I am not trying to give
legal advice. What I am trying to do is make the average user
more aware of some of the aspects of software law. If you have
any specific questions go to your own lawyer or a lawyer who
specializes in software law.

Programs may take many forms. They may be purchased on disks,
cassette tapes, cartridges or stringy floppies for the C-64.
The only difference between a blank disk and a word processing
program is a small amount of magnetic information that has been
placed on the disk. Usually the magnetic information can be
placed on the disk in less than a minute. With todays high
speed copy machines, programs may be duplicated within a
minutes or less. This will include the time necessary to verify
the disk.

Many programs take thousands of hours to develop. A good
program will need a great amount of time to develop and debug.
Anyone who has written even a simple program in BASIC can
verify this fact. Consider the time required to write a good
data base or a good word processor. Often times the program
will be developed by a group of programmers, all working
together to finish the program. Each programmer may be a
specialist in a particular aspect of the program. How can a
programmer make any money if it takes months to develop a
program and only minutes for a software pirate to copy?

Two methods currently exist to protect the program from
unauthorized copying. Both offer the programmer some amount of
protection for his software. First is the legal method, this is
the law of the country where the program is used. Second is the
copy protection method, this is the method that the programmer
uses to actually prevent unauthorized
software. In this chapter I will cover
popular legal ways of protecting computer

duplication of
a few of the
software.

the
more

The Congress of the United
to protect the author of a
ways that a programmer may
being copied.

States has passed a number of
computer program. There are
legally protect his software

laws
many
from

1). Trade Secret:

Trade secrets will protect the program as long as the program
is kept a secret. If you keep your program secret and the code
that makes the program work a secret, you have the best
protection of all. The difficulty comes in when you try to sell
the program to the customer. If you don't require the customer
and all the users to sign a non-disclosure agreement, your

PPMII SOFTWARE LAW PAGE 1

trade secret status may be lost. Trade secrets work well during
the development phase of the program, but they are impractical
if the program is to be mass marketed.

2). Pate~t Protection:

Copyrights only protects the expression of an idea, whereas a
patent will protect the idea itself. If your program is granted
a patent, you will have a seventeen year monopoly on your idea.
This sounds like it might be the ideal way to protect your
program. Right?

WRONG! Patents many times take two or more years to obtain,
your program may be obsolete before it has patent protection.
Also the patent office may be unwilling to provide your program

idea itself. Although this last sound confusing,

with a patent.

3). Trademarks:

The trademarks can only protect the name of the program,
the program itself. If your program has a good name, you
want to use a trademark to prevent anyone else from using
same name on their products.

not
will

the

4). Copyright:

A copyright will protect the expression of an idea, not the
statement may

it really is easy to understand.

Most lawyers agree the best legal protection for your software
is through the use of the copyright protection laws. In recent
years the copyright laws have been updated and protection has
been specifically extended to computer programs. This coverage
will apply if the program is on a disk, cassette tape,
cartridge or part of the internal ROM memory of the computer.

I stated earlier that the copyright will protect the expression
of an idea, not the idea itself. Let's look at this example.
You, as a software author are working on word processing
program. This is to be the best word processing program ever
made. It will have all the functions of any other word
processor plus a few new ideas of your own. While you are
writing the program, you make every effort to insure that no
one gets a copy of your code, thereby insuring your trade
secret protection is maintained. Once the program is finished
you copyright the program and begin to market the program. A
few weeks later ybu find out that someone else has just
marketed a new word processing program, this program has every
feature that your program has. The two programs are very
similar and perform all the same functions. Could this be a
case of copyright infringement? Possibly, or it could be the
case of two programmers simultaneously creating similar
programs. Even though the programs appear to be similar, they

PPMII SOFTWARE LAW PAGE 2

have been created independently of each other. The other
program may perform the same functions that yours does, but it
does it in a different way. It is not what the program does, it
is how it does it. Thus the statement: A copyright will protect
the expression of an idea, not the idea itself.

Let's take a look at another example. You develop a word
processing program. A software pirate buys a copy of your
program. He changes the name and a few lines of code. The
pirate then sells the program as his own. This is a clear cut
case of copyright infringement. One can not just change a few
simple lines of code and say that they are the author. If you
take the pirate to court it would be an easy case to win. The
program would have to be substantially different from your
program in ordered to be considered unique.

The copyright is automatically born when the program is created
and transferred from you to paper, disk or other media. You
have up to five years to perfect your copyright with the
Copyright Office. When you wish to perfect the copyright, you
must follow a few simple steps. First, you need to place the
proper copyright notice in a conspicuous place, you must file
the proper form with the Copyright Office, send in a check for
Ten dollars, the first twenty five pages and the last twenty
five pages of your program. It would be advisable to contact
your lawyer for further information on how to proceed.

You, as a software autho~, have copyrighted your program and
have done it properly. What is to prevent some one from copying
your program? The copyright law states that anyone who
willingly copies your program is in violation of the law. They
don't have to sell your program to violate the law, they only
have to copy it to be in violation. The law does provide for
the lawful owner of the program to make a copy for archival
purposes. The law also provides for the lawful owner of a
program to adapt (modify) the program if ·the adaptation
(modification) is essential to the use of the program.

If you find that someone has violated the law and is copying
your program you can sue that person. You may recover any
actual damages that you incurred, your attorneys fees, court
costs and whatever other damages the court wishes to order. You
may also request an injunction to prevent the pirate from any
further copying of your program.

Your local library is a good source of reference on computer
software law. Many books have been written on the subject in
the past few years. Try to get the most recent one, because the
law is changing almost daily.

5). Limiting liability:

This form of protection may very well be the most important for
the software author. By limiting his liability the software
author can protect himself from unhappy or dissatisfied

PPMII SOFTWARE LAW PAGE 3

customers. The personal computer is covered by consumer
protection laws. Anytime the consumer purchases a software
program (or most any item) certain warranties go with.

Three types of warranties are: express warranty, implied
warranty of fitness and implied warranty of merchantability.
The express warranty is created by the wording of the program
or a salesmans words (i.e. 'This program will sort five
thousand files in two seconds'). If the product won't do it, it
shouldn't say it. The implied warranty of fitness only comes
into play if a salesman states that the program will fulfill
his needs and the customer buys the product based upon the
salesmans recommendations. Again if the product won't do it,
don't say that it will. The implied warranty of merchantability
states that the product is as good as anyone elses. This
warranty is created automatically when your program is sold.

Why then, is limiting liability the most important type of
protection for the software author? Because if you, as the
software author, don't properly disclaim each and every
warranty, the author or seller may be open to a lawsuit if the
product does not perform as the buyer expected it to. In many
states the disclaimer must be placed in a conspicuous location,
visible without opening the package, in order to be valid. If
you put the disclaimer in the wrong location, it may be
considered void. Contact a lawyer for specific information on
limiting your liability if you are considering writing
programs.

PPMII SOFTWARE LAW PAGE 4

ARCHIVAL COPIES

The dictionary defines the word ARCHIVE as follows: The place
where records or papers of historical interest are stored. The
meaning in the computer industry has taken a slightly different
turn. An archival copy of a program is a duplicate program that
is stored in a safe place, to be used in the event that
anything should happen to the original. Software laws today
provide for the owner of a program to make an archival copy of
the original program. It is your right to make a copy of any
program that you purchase. You also have the right to modify
the program that you purchase, providing that you donlt make
copies of the original or the modified programs for anyone
else.

I think that we all have purchased a program, gotten it home
and found that the program did not suit our needs. Sometimes
the program only needed a small change to suit our particular
needs. Other times the program was junk and we just wasted our
money. If you wish to modify the program, you may do so. You
may not give copies of the modified program to your friends. It
is still protected by copyright laws. Changing a few lines of
code or renaming the program will not let the purchaser usurp
the copyright law.

Software stored on disk, tape or computer chip is highly
susceptible to damage. Should the original copy of a program
become unuseable for any reason, the user only has to go to his
archives and retrieve the archival copy and he is back in
business.

How does one obtain an arvchival copy of a program? Some
software companies provide a backup program for a nominal fee.
Others do not. They leave it up to the individual to make his
own copy. In the interest of preventing software piracy some
companies make their software virtually uncopyable. Other
companies offer the legitimate purchaser the right to obtain an
archival copy for a nominal fee, thereby keeping the honest
people honest.

What is the owner of the program to do? The manufacturer will
not supply a backup and the program has a great deal of
protection built in to prevent illegal copying. This protection
prevents the legitimate buyer from making an archival copy. It
seems some software companies want people to 'break' their
programs in order to obtain a backup copy. 'Breaking' a program
refers to removing all the protection schemes from a program.
'Breaking' a program will allow the program to be copied by any
convenient method. The broken program will perform exactly the
same as the original. The only difference between the original
and the broken version is the program protection. In some ways
it seems that software companies are encouraging· piracy, by
forcing the end user to break a program in order to obtain an
archival copy. Once the program is broken anyone can copy it

PPtH I ARCHIVAL COPIES PAGE 5

and many times they do (illegally of course). Remember, once
you have purchased the program it is yours, to do with as you
wish. You may modify the program, you can change the program,
you can even sell the original version of the program if you
wish. You may NOT make copies of the program to give or to sell
to other people. That is illegal.

I have many copy programs that will copy almost any disk,
errors and all. They take less than five minutes to make a copy
of a full disk and, in most cases, will make an exact duplicate
of the original program, including any errors. The major
problem with the copy programs is that the copied program will
perform just like the original.

You might ask why I think that this is a problem. If the
original disk used 'bad blocks' the copy will use 'bad blocks'.
'Bad blocks' is a type of program protection that will
literally beat your disk drive to death when the program loads
in to memory. The programmer will intentionally write a bad
block on the disk. This bad block does not contain any
information, its only purpose is to generate an error when the
disk drive tries to read the block. The disk drive will make a
loud banging sound when it tries to read this bad block. This
banging results from the cam (that moves the read/write head)
bumping against its end stop. This bumping can be very hard on
the disk drive. Many disk drives have been knocked out of
alignment while trying to read a bad block.

It is the program author's right to protect his software from
unauthorized duplication. It is your right to protect your disk
drive from being beat to death. You have the right to protect
your investment from being rendered useless. It is your right
to 'fix' the program so that it will not beat your drive to
death. You also have the right to make an archival copy of your
programs. Don't let a protected program keep you from having
the copy you need.

In 1976 Congress passed the current copyright law. This law is
refered to as 'TITLE 17, USC, COPYRIGHTS'. A copy of this law
is not hard to find; all law libraries have one. Check with
your local court house or university libraries for a copy of
the act. Prior to 1976 the copyright laws could be found in the
'COPYRIGHT ACT OF 1909'. The 1909 law did not specifically
address computer software (for a good reason - there weren't
any computers in 1909). It was not until 1976 that computer
programs were specifically mentioned in the copyright law and
then only briefly. On December 12, 1980 the Congress revised
Section 117 of the 1976 copyright act to specifically include
computer software. The revision was known as 'COMPUTER SOFTWARE
ACT OF 1980'.

The 1980 act provided a definition of a 'computer program' (17
USC 101). Computer software is defined as: 'A COMPUTER PROGRAM
IS A SET OF STATEMENTS OR INSTRUCTIONS TO BE USED DIRECTLY OR
INDIRECTLY IN A COMPUTER TO BRING ABOUT A CERTAIN RESULT.'

PPMII ARCHIVAL COPIES PAGE 6

This definition is hardly startling or revolutionary; it is,
however, the first definition of computer software in a U.S.
copyright law.

The 1980 act is a revision of section 117 of the 1976 act. The
new section 117 provides some specifics relating to backing up
programs. It gives the lawful owner of a program the right to
copy or adapt a copyrighted program as long as the copying is
essential to using the program (117 USC 117):

'NOTWITHSTANDING THE PROVISIONS OF SECTION 106, IT IS NOT
AN INFRINGEMENT FOR THE OWNER OF A COpy OF A COMPUTER PROGRAM
TO MAKE, OR AUTHORIZE THE MAKING OF, ANOTHER COpy OR ADAPTATION
OF THAT COMPUTER PROGRAM PROVIDED (1) THAT THE NEW COpy OR
ADAPTATION IS CREATED AS AN ESSENTIAL STEP IN THE UTILIZATION
OF THE COMPUTER OR (2) THAT THE NEW COpy OR ADAPTATION IS FOR
ARCHIVAL PURPOSES ONLY AND THAT ALL ARCHIVAL COPIES ARE
DESTROYED IN THE EVENT THAT CONTINUED POSSESSION OF THE
COMPUTER PROGRAM CEASES TO BE RIGHTFUL.'

'ANY EXACT COPIES PREPARED IN ACCORDANCE WITH THE
PROVISIONS OF THIS SECTION MAY BE LEASED, SOLD, OR OTHERWISE
TRANSFERRED, ALONG WITH THE COpy FROM WHICH THE COPIES WERE
PREPARED, ONLY AS PART OF THE LEASE, SALE OR OTHER TRANSFER OF
ALL RIGHTS IN THE PROGRAM. ADAPTIONS SO PREPARED MAY BE
TRANSFERRED ONLY WITH THE AUTHORIZATION OF THE COPYRIGHT
HOLDER.'

The COPYRIGHT ACT OF 1980 allows the backing up of a
copyrighted program for archival purposes provided that the
archival copies ARE NOT retained by original purchaser after
the purchaser sells the program. This means that you are
allowed to keep backup copies of the program as long as you
keep the original. In most cases there is only one occasion
when you can no longer keep a back up copy. That's when you
sell it to someone else.

The purchaser of a copyrighted program is allowed to make an
adaptation (change or modify) as long as the adaptation is an
essential step in the utilization of the program. The purchaser
may not sell or transfer the adapted program without the
authorization of the copyright holder. All adaptations of the
original program must be destroyed upon sale of the original!

PPMII ARCHIVAL COPIES PAGE 7

COpy PROTECTION

Copy protection refers to the methods that a software author
uses to protect his program from unauthorized duplication.
These methods range from the simple to the b;zzare. Most often
copy protection ;s an afterthought. The software author will
spend weeks or months writing a program. Then he usually spends
a few hours protecting his work. I have seen programs that have
taken literally thousands of hours to write, then the author
spends thirty minutes on the protection scheme.

Programs on cassette may be protected by several methods. The
program may be stored on the tape in several parts. Each part
will load the next part. Information may be stored in such a
way that it may be difficult to copy with only one cassette
player. There is not a lot one can do to protect software saved
on cassette. There are a few firms which make an interface
which will allow the user to copy any cassette based program to
another cassette. These interfaces will make exact copies of
the original. When one considers the cost of such an interface,
it will provide the most economical method of program
duplication. Find a friend who has a cassette player and share
the cost of the interface.

Disk based programs can not be copied as easily as cassette
based programs. If they could there would not be any need for
this book. Programs stored on disk have more options as to
their copy protection. The BLOCK ALLOCATION MAP (BAM) may be
modified. The DIRECTORY (DIR) can be hidden from the user or it
may be modified to prevent the user from listing the directory.
Special information may be stored on the disk in such a manner
that it may not be easily retrieved by the average user. Many
different types of errors may be intentionally placed on the
disk. These errors will be checked by the program as it runs.
If the error is of the proper type and at the proper location
the program will execute. If some one makes a copy of the
original disk and does not place the errors on the duplicate
disk the program will not run. Disks may be formatted on a disk
drive that is not totally compatible with the 1541. The program
will load and run properly, but duplicates can not be made on
the 1541 disk drive.

Information is stored on the disk in what is called a BLOCK.
There are 683 blocks of information that may be used on the
1541 drive. Each block may contain up to 256 BYTES of
information. In addition to the 683 blocks, the disk will also
contain some special information (header) including SYNC MARKS,
ID numbers, CHECKSUM and TRACK and SECTOR numbers. The disk
drive uses this special information to process and identify the
block. This special information is referred to as the HEADER.
Some software manufacturers will modify the 'header ' in such a
fashion that this block of information is no longer readable by
the disk drive. Once a block has been modified in this manner

PPMII COpy PROTECTION PAGE 8

it is referred to as a BAD BLOCK. Generally a bad block does
not contain any information, it is just there to create an
error when the disk drive tries to read it.

I am sure that you have all tried to load a disk that has
contained a bad block. While the program is loading the red
light will flash and the disk drive will make a loud banging
noise. This noise is generated by the disk drive when it tries
to read the bad block. The disk drive can not properly read the
information contained in on the disk. When this occurs the disk
drive will mechanically re-position the read/write head. To do
this it is necessary to pound the stepper motor cam against its
end stop. The read/write head of the disk drive is attached to
the stepper motor cam. When the bad block is encountered, an
error will be generated and the read/write head will literally
get beat to death. In otber words, if the disk drive tries to
read a bad block the read/write head will pound against the end
stop in an attempt to retrieve the information from the disk.

I know that all of you have heard that there is a problem with
the 1541 disk drives going out of alignment. Reading and
writing bad blocks is a major contributor to this
mis-alignment. Why would a software manufacturer put bad blocks
on a disk when it may tear up the disk drive when their program
tries to read the bad block??? Because they cares more about
protecting their program from pirates than they do about your
disk drive. If your disk drive gets beat to death trying to
read his program t that's your problem (or so they think).

While I am on my soap box t I would like to tell a little story
that happened to me. About six months ago I purchased a
protected program (cost $95.00). After using this program for
less than two months the program developed a flaw in it (due to
its protection scheme). After contacting the manufacturer, I
was told to send in the original program disk and they would
send me a new copy (for $12.00). The trouble was that I needed
the program and could not afford to wait two or more weeks, as
they requested. It was necessary for me to modify the original
disk so that it could be returned to working condition and it
was also necessary to repair my drive.

In an effort to prevent anyone from making a copy of the disk
the company used a technique called bad blocks on the disk. As
you all know t when the disk drive tries to read a bad block the
drive makes a loud banging noise. This noise is a direct result
of the drives stepper motor cam pounding against a stop. This
pounding can be very harmful to the disk drives' mechanical
parts. After the drive mechanism pounds against the stop enough
times, the drives' stepper motor will become mis-aligned. The
read/write head, which is attached to the stepper motor, will
be beat out of alignment and the disk drive will no longer be
able to read or write any information from the disk.

PPMII COpy PROTECTION PAGE 9

On the disk I purchased, the program would read a portion of
the program into memory, modify it and re-write the information
back to the original disk. While loading the program, the disk
drive made an unusually loud and hard clicking noise (bad
blocks were used). After this, the disk drive had a hard time
reading the information from the disk. After the program had
run and all the information had been processed, the program
attempted to write the information back to the disk. After
partially writing the information, the program stopped. The
disk drive head had been knocked out of alignment when the
program tried to read the bad block. My disk drive was damaged
and the program was rendered useless, even when used on a good
drive. The company's protection scheme prevented me from making
a backup copy of the program and my drive was made useless.

I cannot begin to tell you of all the people who, after trying
to load one of these protected programs, have had their disk
drives damaged. If you have not had your disk drive beaten out
of alignment, just wait. Your turn is coming!

Some of the newer protection schemes rely on different forms of
data on the disk. Rather than have the disk drivels normal DOS
(Disk Operating System) read the data from the disk, many
programmers are now writing their own routines to read this
data from the disk. What may appear as an error to the normal
DOS may be the programmers own form program protection.
Programmers have just recently begun to read and write data to
the disk at will. This is accomplished by writing their own ML
routine that resides in the RAM memory of the disk drive. All
the programmer has to do is execute this routine to read or
write data from the disk. Since the disk drive is under the
control of this new routine all of the error checking routines
may be bypassed. This allows the programmer to read
non-standard dats as it comes from the disk. The specific
routines and a10grathims will be explained in further detail in
later chapters of this book.

Cartridge programs may also be copy protected. The fact that
the program resides on a cartridge, is copy protection enough
for most people. Down loading the cartridge to disk (cassette)
can usually be accomplished very easily. The information stored
on the cartridge may then be loaded in the normal fashion and
executed. More on this in the chapter on cartridges.

PPMII COPY PROTECTION PAGE 10

EVOLUTION OF PROTECTION SCHEMES

In this chapter we will try to cover the evolution of disk
protection schemes for the C-64. We will give an overview of
the schemes that have appeared on the majority of software
during the past few years. The schemes discussed will be those
that work and those that don't. Those that work will be covered
with special emphasis. You may want to use this guide to help
you understand the various types of protection.

IN THE BEGINNING •••.

In the beginning there were not any copy programs for the C-64.
The owner of the C-64 had much diffilculty making an archival
copy of his treasured software. It was a dark and desolate time
for the owner of the C-64 computer. There was not much software
available for this new and powerful machine. The software that
was available was overpriced, poor quality and mostly written
in BASIC.

When the proud owner of a new piece of software would get it
home, he immediately tried to make an archival copy of the
valuable new program. This required the user to LOAD and SAVE
each and every file from the disk. If each file was a BASIC
program file, it would not pose much of problem. All the
programmer had to do was just use another type of file (seq,
usr, rel or ML) on the disk and the user could no longer back
up the original disk by just simply LOADing and SAVEing the
files.

The early types of program protection that developed were
simple, easy to implement and mostly ineffective. Most of the
original software for the C-64 was written in BASIC. The
original protection schemes were designed to prevent the user
from simply loading and then saving the program directly from
memory. This could be done in a number of ways. First (and most
ineffective), is through the use of a few simple POKEs when the
program was RUN. These POKEs would disable the RUN/STOP &
RESTORE keys, thereby preventing the user from stopping the
program. If the user could not stop the program, they could not
save the program back to another disk. This type of protection
was only effective if the user ran the program. All the user
had to do was to LOAD the program into memory, and immediately
SAVE the program back to another disk. The SAVE had to be
performed prior to RUNning the program. It didn't take long
before the end user was able to copy all his software by simply
LOADing and SAVEing the files.

The first improvement in program protection came through the
use of a boot or loader program. This boot was also written in
BASIC. In order for the main program to operate properly it was
necessary to load the main program from another program (the
boot or loader program). The user would load and RUN the loader

PPM I I EVOLUTION PAGE 11

_I'

program. The loader program would POKE a few values into memory
then it would LOAD and automatically RUN the main program. The
main program would then check (PEEK) to see if the first
program had placed the proper values into memory. This way the
user could not simply LOAD and SAVE just the main program, they
also had to SAVE the boot. Occasionally the loader program
would have hidden lines, some pointers reset or bogus line
numbers (see the PPM volume I). All this was an attempt to
confuse the inexperienced user and was still not very
effective.

Then came the first real step forward in program protection,
the use of a ML loader. Not just any old ML loader, but an
auto-loader. An auto-loader is a ML program that resides in a
special area of memory (see the chapter on auto-loaders). When
the auto-loader is loaded into memory it will automatically
execute (run). There is no need to tell the computer to RUN
(nor SYS). As soon as the program is loaded into memory the
program executes. Generally these auto loaders perform the same
functions as the BASIC loader performs. They will store a few
values in memory and then LOAD and execute the main program.
The main program will check for these special values as it
executes. If the special values are there the program will run,
if not the program will crash. It was still possible to LOAD
the BASIC program and SAVE it from memory. One problem though,
if the user was not sophisticated enough to go into the BASIC
program and modify it so that it would not require the special
values in memory, it still would not run. When the user tried
to LOAD the ML auto-loader it would immediately execute,
preventing the user from copying the ML auto-loader. As long as
the user did not know much about BASIC programming this was an
effective technique. Even if the user could LOAD and LIST the
BASIC program, they still had to have enough knowledge to
modify it so it would properly execute without the loader.

Shortly thereafter, the BASIC programs began to be replaced by
ML. Now the user could not LIST either the loader or the main
program. Since the main program was written in ML, the user
could no longer just LOAD and SAVE it. This posed quite a
problem for the user; it became almost impossible to back up
the disks that they purchased. Well, about this time, a copy
program appeared on the market. Not just any old copy program,
but 1541 BACKUP!! This would copy a whole disk in 30 minutes.
I'm sure some of you 'old timers' remember this one, it was the
copy program with the 'gas gauge'. The program was slow and
limited in what it would do, but it worked! It was possible
copy the whole disk~ from track 1 to track 35, without even
knowing what was on the disk. This program would copy all types
of files, BASIC or ML, Program, Sequential, User or Relative.
The only thing that the copy program would not do is make a
copy of a disk with an error on it. The copy program would just
'give up' if it encountered an error.

PPMII EVOLUTION PAGE 12

Well, it didn't take long until someone came up with idea that
they could stop this type of copy program. All they had to do
was to create an error on the disk. They just intentionally
placed an error on the disk so that when the copy program
encountered the error it caused the program to give up. The
idea here is to inhibit or prevent the user from making a copy;
the error served no purpose other than keeping the user from
copying the disk. Two general types of errors appeared on the
scene. The first and most common type of error involved the use
of modified data on the disk. All the programmer had to do is
put some data on the disk that should not be there and the disk
drive would interpret this as an error. The disk drive has a
very sophisticated error checking routine that insures proper
reading of the data. If as little as one byte is lout of place l
the drive will give an error condition. The most common type of
errors to appear were 20, 21, 22, 23, & 27. These errors, while
undesirable, were 'acceptable' (you'll see what I mean by
'acceptable'). When the disk drive read this type of error it
would cause the READ/WRITE head to beat against its end stop.
This beating, if it occurred repeatedly, would cause the drive

would punch hole in the disk. The would

to go out of alignment. Keep in mind that at this stage
program protection the program never read this error.
error's only purpose was to inhibit the user from copying
disk. This makes the error acceptable.

of
The
the

The second and the least common type of error is where the
programmer a programmer
save the program on the disk in such a manner that a certain
track or group of tracks (usually the outer tracks) would be
unused. The programmer would then use a paper punch to punch a
hole in disk on these unused tracks. The original disk would
never move the R/W head over this 'error' on the disk. The
programmer wo~ld then place all kinds of warning labels on the
program informing the user that if they tried to copy the disk
their disk drive would be damaged. If the user tried to make a
copy of this disk they would end up ruining their disk
drive!!!! When the disk drive encountered the hole in the
disk, the R/W head would usually become damaged beyond repair.
This seemed like a pretty good way for the programmer to
protect his program, right?? WRONG! The programmer overlooked
one small fact. When the disk drive reads information from a
disk the R/W head is left in last position that it read data
from the disk. This means that if the user were to read another
program that used the outer tracks, the disk drives R/W head
would remain on the outer tracks. Now, just suppose what would
happen to the disk drive if the disk with the hole were
inserted and the user tried to LOAD the program. Instant
disaster, because the R/W head had been left on the outer
tracks from the last disk; now when the 'punched' disk is
inserted, the R/W head will be directly over the hole. The
legitimate user would have destroyed his disk drive, ull
because some programmer didn't take the time to properly
protect his program.

PPMII EVOLUTION PAGE 13

About this time copy programs took a great step forward. The
file copy program appeared. The file copy program would allow
the user to copy any type of file from one disk to another. It
was now possible to just copy all the files from the original
disk and make a perfect copy. Well it didn't take long before
the programmers came up with a method of preventing file
copying a disk and getting a working copy.

The next 'little' evolution in program protection is the most
disasterous change that could have occurred. Some 'bright'
programmer came up with the idea that if they could put an
error on the disk to inhibit anyone from copying the disk it
might be possible have the program itself check for the error
on the disk. This is where program protection began to stink.
Remember that whenever the disk drive encounters an error the
R/W head gets beat up against its end stop. Now every time that
one of these 'protected programs' loads into memory the error
gets checked. Every time the user loads one of his favorite
programs into memory the protection scheme causes the R/W head
to beat up against the end stop. After the R/W head bangs
enough times, the drive gets pounded out of alignment.

We are going to introduce a very important concept here; take
time to understand this. Let's look at the concept of program
protection.

1). The programmer
that would not

places non-standard data on the disk
normally be there, i.e. the error).

(data

2). The program checks
data (the error).

for the presence of this non-standard

3) • If the non-standard data is present (as on the original
disk), the disk drive will pass a specific va1ue(s) to the
computer. If the non-standard data is not present (as on
the copy disk) the disk drive will pass a different value
to the computer.

4). If the proper value is returned from the disk drive
program will execute properly. If the incorrect value
returned from the disk drive, the program will crash.

the
is

This 'error checking' form of program protection is especially
hazardous to the casual user of protected programs. Some
programs go so far as to tell the user that 'NOISE AT THE END
OF LOAD IS NORMAL'. The poor user, who does not know any
better, will end up beating their disk drive to death while
listening to the 'NORMAL' noise. Thousands of disk drives have
been beat out of alignment by this 'NORMAL' noise.

This error checking caught on like wild fire. Before long every
programmer was using this terrible form of program protection.
The programmers somehow never gave any thought to what might
happen to the users disk drive after repeated use of the
protected program. Even worse than that is some progrmmers knew

PPMII EVOLUTION PAG E 14

the effects of these errors on the disk drive and used them
anyway.

Generating these errors required a programmer to have a very
thorough understanding of how data is stored on the disk and
how this data could be manipulated. It was no simple task to
write a program that would allow the user to duplicate these
errors. In fact t for a short time this error checking was
uncopyable. The programmers were smug in the belief that they
had a form of program protection that was beneficial to the
software industry. This error checking kept the user from
making a working copy of the origial disk and thereby prevented
software piracy.

Well t the user soon realized that his disk drive was getting
beat to death by using these protected disks. In order for the
end user to use the software without destroying their disk
drive t it became essential to modify the program. If the user
was to keep their disk drive in alignment t it was necessary to
remove the need for the program to find the error on the disk.
This is where the casual user found himself reading books on ML
and trying to find out ways to modify the original program.
When the user found out how simple was is to modify these
protected programs t it wasn't long before everyone was doing
it.

Then a company wrote a program (UNGUARO BY MICRO-W) that would
allow the user to repoduce these errors on the copy disk (why
anyone would want to reproduce these errors is beyond me). Now
the user had a tool to make an archival copy of their valued
program. UNGUARO would do errors 20 t 21 22 t 23 & 27. This
program was a real break through for the

t

user who only wants to
reproduce these errors.

It didn't take the programmers long to come up with a new type
of error that could be used for program protection. This Inewl
error was #29 t 1.0. mismatch. The way that programmers
generated this error is by reformatting a single track with a
different 1.0. Error 29 is unique in that it does not cause the
head to beat against the end stop. Error 29 was a pleasant
change on the program protection scene. This type of protection
offered the programmer some measure of security for their
software without beating the user's disk drive to death.

It wasn't very long before the users found a method of
producing the error 29. A simple BASIC program could be written
that would allow the user to reformat any track with any 1.0.
desired. .

We are now at the time where the endless cycle in program
protection really becomes apparant. The programmers have found
a way to protect their software. Shortly thereafter t a company
writes a program that will copy those disks. Then the
programmers change their protection scheme t making it
uncopyable. In a few months some other company writes a copy

PPMII EVOLUTION PAGE 15

program that will allow the user to back up this new protection
scheme. Then the programmers come up with a new protection
scheme that can not be copied •••.. and so on and so on.

Now the level of expertise in program protection is at a new
plateau. Programmers have become more sophisticated and so have
the program protection schemes. Some companies have included an
extra sector on tracks 18-24. This may seem like a new
protection scheme, but it is really a very old technique. The
extra sector is a hold over from the days of the 2040 & 3040
disk drives from Commodore. Commodore disk drives used to have
one more sector than the 1541 does on tracks 18-24. All a
programmer had to do is use the format from a 2040 or 3040 disk
drive and copy his program on to it. Then the programmer checks
for the presence of the extra sector, if it1s there the program

'will execute properly. If the extra sector is not there, the
program will crash.

Well, in just the past few months we have seen some very
drastic changes and advancements in the field of program
protection. Programmers have learned how to read and write data
anywhere on the disk. The data can be written on the track or
in between tracks (half-tracks). The data can be placed beyond
track 35 (extra tracks). The data may be written at different
speeds to the disk (modified density). The data can be written
in a number of different ways to the disk. It is not important
how the programmer choses to write the data on the disk. What
is important is that the programmer must be able to verify that
the non-standard data is present. Recall our discussion of the
concept of program protection. Keep in mind that no matter what
form of program protection is used on the disk, the same basic
premise of checking for the non-standard data is followed.

We have made an attempt to bring the reader up to date in the
field of program protection. From here it will be necessary to
look at the specific way that data is stored on the disk, how
this data can be modified and how a program can be written that
will read this non-standard data. Up to now the information
presented has been very straight forward and easy to follow.
From here on out, in may take a little more concentration to
fully understand the material. If you don't grasp everything we
are telling you, don't worry about it. Take your time and
re-read the following chapters if necessary.

""\

PPMII EVOLUTION PAGE 16

THE FUTURE: A PERSONAL OPINION

We've stepped through the evolution of copy protection
techniques and now it's time to look at the future. What is the
direction for copy protection, and what does that mean to the
user? Will the new protection schemes prohibit you from making
an archival copy of your software?

Copy protection is becoming so sophisticated that many of the
current copy programs are unable to handle the present schemes
let alone those of the future. We have investigated the newest
copy programs on the market and have found each one lacking in
some way. Some are better than others, but none have been able
to successfully overcome all of the protection schemes
currently being utilized. This is not meant to be a
condemnation of copy prog~ams, but merely a statement of fact.

We are now approaching a level of protection that simply cannot
be overcome. This is mainly due to the built in hardware
limitations of the 1541 Disk Drive.

You may have noticed that the newest copy programs will only
copy specific programs. A few months later, an update is
offered that will copy a few more programs. This is the future
folks! Most ~f the copy programs today include a routine to
read the headers of the original disk. Once this information is
read, the program goes into a routine to duplicate THAT
specific disk. If it is not a disk that has been analyzed 'in
house' and provided for through the copy program, you will
probably end up with an unsuccessful copy attempt. With the
introduction of non-standard sectors, altered density bits,
extra sectors, and the like, it is becoming increasingly more
difficult for a copy program to allow for and deal with all of
these possibilities. We can copy a disk that utilizes all of
these techniques, but where these errors are to be placed on
the dis~ and which techniques will be used is the problem we
face now. This does not include what we will encounter in the
future. Copying some of these schemes will require extensive
investigation of each track and sector of the original disk and
even then we have the problem of duplication. Some of the
schemes being developed today may, because of hardware
limitations, prove impossible for the 1541 disk drive to
duplicate.

Where does this leave the legitimate user? Although the
programmers intent is to keep his work safe from the 'pirate',
it is the legitimate user that comes up on the 'short end' in
this never-ending saga. It would seem that every program you
buy, requires that you also purchase an updated copy program
before you can exercise your right to make an archival copy of
your software. And what about those who own other types of disk
drives? Are they to be kept from using the latest software
because the protection scheme being utilized by the programmer
can only be read from a 1541 disk drive? Copying some of these

PPM I I THE FUTURE PAGE 17

schemes requires extensive investigation of each track and
sector of the original disk and even then we have the problem
of duplication.

Making a archival copy of your original program, still does not
allow you to exercise all of your rights. You are allowed by
law to make revisions to t~e programs that you own (provided
that these revisions are essential the lawful use of the
program). This may be a crucial factor in business software, or
utility programs. The programs you buy may not satisfy all of
your needs. You may purchase a program and find yourself
wishing that it had one or two more features. If you could
access the code, you could add those features! A perfect copy
of the original disk will not allow you access to the code if
the program is protected. Let's not forget that some of these
programs still 'beat' your disk drive to death. A copy disk
will not eliminate this problem for you either.

The material presented in this book, along with it's
predecessor (PROGRAM PROTECTION MANUAL fOR THE C-64), is
designed to offer you an alternative. You can take control of
your software, or you can remain a passive victim. The road to
control may seem rocky at first, but it is worth the time and
effort. With the techniques and tools provided through these
manuals, you will learn to create your archival copies and have
the access necessary to alter the program code to suit your
needs. With time, patience, effort, and careful study, you will
no longer have to purchase those expensive 'updates ' to
exercise your rights.

Tryout the techniques presented in this manual. If one doesn't
work, try another. You ' l1 find that what you learn from one
program can be applied to another. Why not change a branch
statement, or hunt for an entry point instead of taking out
your check book to purchase the latest '99.999% EFFECTIVE COpy
PROGRAM ' on the market~ Just a thought on those 199.999%
EFFECTIVE COpy PROGRAMS ' - Why is it that every time I want to
copy something, it falls in that 0.001% group???? With our
methods the most you can lose is a little time, but we believe
you ' 11 prefer that to losing money.

Don'~ be surprised if you learn something along the way. This
was one of our primary goals in the preparation of this manual.
LOAD and RUN is not enough for those who wish to know WHY. Why
do some programs run automatically? Why does the disk drive
rattle with some programs? H~w does SYS 64738 perform a RESET?
How can I make my programs re-start by pressing the RESTORE
key? You will find many of the 'hows ' and 'whys' addressed in
these pages.

A great deal of material is included on the inner working of
the disk drive. You will be able to see what the track and
sector editors do not show.

It's up to you now. Take charge and learn something in the
process. By the way, don't forget to have FUN!

PPMII THE FUTURE PAGE 18

INTRODUCTION TO MACHINE LANGUAGE

In this chapter, we will take an introductory look at MACHINE
LANGUAGE (ML). We will use a machine language monitor to enter
our programs. The monitor we have chosen is LOMON, which is on
the program disk that accompanies PROGRAM PROTECTION MANUAL
VOLUME II. This monitor resides at HEX $8000, and may be
activated from BASIC with SYS 32768.

We do not present this chapter as the ultimate 'MACHINE
LANGUAGE TEXTBOOK ' • Our main objective is to get you started in
the right direction. Simple applications will be presented,
along with examples to help clarify what you learn. For those
wishing to continue their study of machine language, CSM Inc.
is planning to publish a text in the near future. Watch the
NEWSLETTER for further details.

Programming in machine language requires careful attention to
detail. A difference of one byte could easily lock-up your
computer. A condition of this kind will not do any damage to
your computer, but you may find that the only way to recover
control of your computer is to use your RESET button. If you do

the BINARY number You in machine

not have one, you
all means, if you
Vol. 1)

will have to power-down and start
don't have RESET button, get one

over.
(see

By
PPM

WHAT IS BINARY?

You could go through life without ever needing to understand
system. can even program

language without a knowledge of BINARY. So why even look at it?
First, it's nothing to be afraid of. Second, it is the
microprocessor's native number system. Although we will use the
DECIMAL system to help explain BINARY, our emphasis will be on
the relationship between BINARY and HEXADECIMAL (HEX). HEX is
important because this is how we will code our programs. It is
not essential to know BINARY, so if this section confuses you,
just skip it. You can always come back to it later.

One unit of memory is called a BIT. BIT stands for BINARY
DIGIT, meaning a unit that can be switched one of two possible
ways. Thus a BIT can have only two different values, ON (1) or
OFF (0). If we have a set of eight BITS, called a BYTE, the
total number of different combinations of O's and 1 's possible
is 256 (count lem!). This gives us 256 one-byte codes we can
use to represent our program instructions, data, etc.

In DECIMAL (BASE 10), the rightmost digit is the least
significant digit. The digit in this position stands for
multiples of 1, which is called the place value. As we move
left, the place value increases by a factor of 10 each time
(this is what makes it a BASE 10 number). The second position
has a place value of 10xl=10, the third position 10xlO=100, the
fourth position 10xlOO=1000, etc. The total contribution made

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 19

by a particular digit in a number is calculated by multiplying
the digit itself times its place value. Let's look at the base
10 number 4321 as an example.

PLACE VALUE 1000 100 10 1
x DIGIT USED 4 3 2 1

: TOTAL VALUE 4000 300 20

Interpreted in DECIMAL this set of digits represents a value of
4000+300+20+1 : 4321. This should come as no surprise.

In BINARY (BASE 2) the rightmost digit position also has a
place value of 1. As we move left, however, the place value
increases by a factor of 2 rather than 10 (see below). Also, in
binary the only digits that can be used are 0 and 1, so
multiplying the digit times its place value is very simple. If
the digit is 1, include the place value in the number's total
value; if the digit is 0, ignore it. Letls use the binary
number %10110110 as an example· (the % is used to indicate
binary).

PLACE VALUE 128 64 32 16
 8
o

4
 2 1

1 1 o
x DIGIT USED 1 0 1 1

--------------------------~-------------------

= TOTAL VALUE 128 0 32 16 0 4 2 0

This set of BINARY digits represents a DECIMAL value of

128+32+16+4+2 : 182.

Now you try a couple.

PLACE VALUE 128 64 32 16 8 4 2 1
x DIGIT USED 0 1 0 1 1 0 1 1

= TOTAL VALUE
 o
 64
 o
 16 8

The value returned is 64+16+8+2+1 = ?

PLACE VALUE 128 64 32 16 8

o

4

2

2
 1

x DIGIT USED 1 0 0 0 1 1 o 1

= TOTAL VALUE

The value returned is ?

That's all there is to it. Now if the programmer had to program
in BINARY, it would be a real chore. After a while all those
O's and 1 IS sta~t to dance around before your eyes. They are
difficult to remember, and hard to type in.

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 20

HEX TO THE RESCUE!

Instead of BINARY we can use HEXADECIMAL (HEX). HEXADECIMAL is
BASE 16. We know that there are 10 different digits (0-9) in
DECIMAL and we've learned that there are only 2 different
digits (0-1) in BINARY. In HEX, therefore, we have to have 16
different digits. Wait a minute, you say. We can use the
regular digits 0-9 for the first ten HEX digits, but what do we
do for the other six? Answer: we use the letters A through F to

increases by factor of 16 each time. Let's look how

stand for the 'digits' 10 through 15.

The following chart should make the relationship clearer:

DECIMAL BINARY HEX
0 % 0000 $ 0
1 % 0001 $ 1
2 % 0010 $ 2
3 % 0011 $ 3
4 % 0100 $ 4
5 % 0101 $ 5
6 % 0110 $ 6
7 % 0111 $ 7
8 % 1000 $ 8
9 % 1001 $ 9

10 % 1010 $ A
11 % 1011 $ B
12 % 1100 $ C
13 % 1101 $ D
14 % 111 0 $ E
15 % 1111 $ F
16 %10000 $10

Once again, the rightmost digit position
value of 1. As we move to the left, this

in HEX
time the

has a
place

place
value

a at we
determine the (DECIMAL) value of the HEX number $10A5 (the $
indicates HEX).

PLACE VALUE 4096 256 16 1
x DIGIT USED 1 o A 5

= TOTAL VALUE 4096 o 160 5

The DECIMAL equivalent of $10A5 is therefore 4096+160+5 = 4261.
Note that the HEX digit 'A' stands for 10 as shown in the chart
above.

The reason we use HEX instead of BINARY is that it is easy to
convert from one to the other, and HEX numbers are easier to
remember. To convert from BINARY to HEX, you divide the BINARY
number into groups of four BITS (starting from the right end of
the number). Each group corresponds to exactly one HEX digit,
in fact the corresponding digit from the chart above. For
instance % 0110 1100 is converted to HEX by substituting the
HEX digit $6 for %0110 and HEX digit $C for %1100. Thus % 0110
1100 equal $6C. Pretty neat, huh?

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 21

Converting from HEX to binary is just as simple. Look up each
HEX digit in the chart above and substitute the corresponding
group of four bits. For example, $F2 = % 1111 0010.

Since one BYTE consists of eight BITS (two HEX digits), the
largest value that can be stored in one BYTE is %1111 1111 =
$FF = 255 DECIMAL. With two BYTES we have 16 BITS (four HEX
digits), which allows us to store values up to %1111 1111 1111
1111 = $FFFF = 65535 DECIMAL. All locations in the Commodore
64's memory have a two-byte ADDRESS associated with them. Thus
the highest address possible is $FFFF = 65535 DECIMAL. This
number is called 64K (lK = $0400 = 1024 DECIMAL)

So much for BINARY-HEX. Let's move on to DECIMAL-HEX
conversions. We've already seen how to convert from HEX to
DECIMAL, but we need to be able to go the other way, from
DECIMAL to HEX. This will be required on a regular basis in
machine language programming.

Letls do an easy one. Very often you will see a SYS command in
a program listing. This command will execute an ML routine
located in the computer's memory. The number you see after the
SYS is the DECIMAL equivalent for the ML routinels location.
For example, you might see a SYS 2049 in a program. Since most
ML monitors use HEX only, it would be your job to convert 2049
DECIMAL to its HEX equivalent before you could investigate the
ML routine through a monitor. Let's do it.

Since 2049 is larger than we can store in one HEX digit
(limited to 15 = $F), we know weill need several HEX digits.
Start by dividing 2049 by 16. The answer is 128 with a
remainder of 1 (128x16=2048). The remainder 1 is taken as the
least significant HEX digit (rightmost digit; one's dfgit).
What about the other HEX digits? Since 128 is still larger than
we can store in a single HEX digit, we have to divide 128 by 16
again. This gives us an answer of 8 with a remainder of 0
(8x16=128). The remainder 0 is taken as our second HEX digit.
Since 8 CAN be represented by a single HEX digit, we also have
found our third digit and can stop. Thus 2049 DECIMAL = $801.
However, most ML monitors require HEX numbers to contain an
even number of digits, so weill pad our result with a 'leading l
zero to give us $0801. This won't change the value, of course.

By the way, some ML monitors such as HESMON have built-in
HEX-DECIMAL and DECIMAL-HEX conversion functions. This can
greatly simplify your ML programming. Still, there is no
substitute for actually knowing how to do these conversions
yourself.

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 22

USING THE LOMON MONITOR

Load and execute LOMON with SYS 32768. Notice the number in the
SYS command. Our monitor resides at HEX $8000. Since we are
starting our monitor up from BASIC, we must tell the computer
in DECIMAL where the monitor is located. The DECIMAL equivalent

(X REGISTER), YR REGISTER) and SP (STACK POINTER). In order

for HEX $8000 is 32768 (verify this yourself for practice).

Let's investigate the monitor. When
should see the following display:

you activate LOMON, you

B*
PC SR AC XR YR SP

.;803E 32 00 83 00 F6

The B*,
monitor
BASIC.

that you
by way of

see, indicates that
a BRK. This is similar

we
to

have
a STOP

entered
command

the
in

The second line contains the labels for the third line: PC
(PROGRAM COUNTER), SR (STATUS REGISTER), AC (ACCUMULATOR), XR

(y
to understand machine language, we must investigate these
REGISTERS.

PROGRAM COUNTER
The program counter is a 16-bit register which contains the
address of the next instruction to be executed. It is merely
two 8-bit locations used together. After the program counter is
used to get a byte from memory it is incremented by 1, pointing
it to the next memory location to be used.

STATUS REGISTER
The status register is an 8-bit register that contains all the
FLAGS. A flag is a one-bit value which is said to be SET if ON
(=1) and CLEAR if OFF (=0).

76543210
N V - B D I Z C

N FLAG - Negative flag. Always equal to the leftmost bit of
the most recently altered register. Also affected by BIT
command.

V FLAG - Overflow flag. Affected by addition (ADC),
subtraction (SBC) and bit test (BIT) commands. Mostly used
for arithmetic in which the numbers are considered to be
signed.

Bit five is not used. It is usually found to be SET
(=1) •

B FLAG - Break flag. SET to 1 after a BRK instruction is
executed; CLEAR otherwise. This helps distinguish a BRK
interrupt from an IRQ (see the chapter on interrupts).

PPM I I INTRODUCTION TO MACHINE LANGUAGE PAGE 23

D FLAG - Decimal mode flag. Changes operation of add and
subtract instructions from BINARY (D=O) to DECIMAL (D=l).
Always CLEARed on RESET in Commodore machines. Can be SET to
1 with SED (SEt Decimal mode) or CLEARed to 0 with CLD
(CLear Decimal mode).

I FLAG - IRQ Interrupt disable flag. Prevents an IRQ
interrupt signal from being recognized. SET to 1- with SEI
(Set IRQ disable) and CLEARed to 0 with CLI (CLear IRQ
disable).

Z FLAG - Zero flag. Used for comparisions, it will be SET to
1 if comparision is equal; otherwise it will be CLEARed to O.

C FLAG - Carry flag. Tests for greater than or equal to
conditions after comparisons with CMP, CPX or CPY. It will be
SET to 1 if the register (A, X or Y) is greater than or equal
to the compared value. CLEARed to 0 if the register is
smaller than the value.

ACCUMULATOR

This is the busiest register. Most of our operations will use

the accumulator.

X REGISTER

An index register. Used mainly as an offset for memory

references. By incrementing or decrementing X you can step

through memory conveniently.

Y REGISTER

Another index register. Similar in function to X.

STACK POINTER

Before we can understand the STACK POINTER, we must take a side

trip into the workings of the STACK. The STACK is located in

memory from $0100 to $OlFF. Its main function is to preserve

the return address during subroutine execution. This function

is carried out automatically. When a subroutine is executed,

the return address is pushed onto the STACK. The last address

put on the stack is always the next one available to be pulled

off. When the RTS is encountered (Return from Subroutine), the

top address on the STACK is pulled off and used as the return

address. If the stack has not been disturbed this address will

be the correct one.

Think of the STACK as a stack of plates. When you add a plate

to the stack, you will put it on top of the plates that are

already there. When you need to remove a plate, you must take

the top one off before you can safely get to the one below it.

The same principle works with our computer's STACK. When we

execute a subroutine with JSR, the computer places the return

address on the STACK. This way it knows where to return to when

it encounters an RTS. There are also commands available to us

to manipulate the STACK directly. Care must be taken to

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 24

properly prepare for this action, before and after the
operation. If we cause the wrong address to be pulled off the
STACK, we may crash the operating system. The processor will
try to return to the wrong location, which may contain invalid
instructions.

Once retrieved from the stack, the return address is placed
into the program counter and incremented by one. It now points
to the next instruction after the JSR which called on the
subroutine. The STACK is used backwards starting from $OlFF
down to $0100. The STACK· POINTER keeps track of the next
available location on the STACK. Since the high byte of the
stack address is always assumed to be $01, the STACK POINTER
holds only the low byte. For example, if the next available
stack location was $OlAO, the STACK POINTER would have the
value $AO.

ENOUGH ALREADY - LETIS LEARN BY DOING!

The best way to learn is to work with a problem. Welve
presented a lot of Iheavy stuff l , so weill let that settle and
take a programming break. Through this break, we will introduce
some more concepts such as: a few of LOMON's commands,
addressing modes, and machine language instructions.

We are going to begin by entering a machine language program.
In order to do that, we must go into ASSEMBLY mode. We will
place our program at $COOO. We chose this area because there ;s
no fear of our program being overwritten by BASIC. We will lead
you through the program and then comment on the code.

1).	 If you have LOMON activated, your cursor should be blinking
beside a I. I. TYPE A COOO LOA #$48 and press the RETURN
key. If you did that correctly, you should see.A C002 on
the next line with the cursor beside it. If you typed
something that the monitor did not like, you will be
prompted with a question mark (?). If you made an error,
just hit the return key and repeat the first instruction.
Your cursor is now blinking beside the .A C002. (How about
that, automatic line numbers!)

2).	 TYPE JSR $FFD2 and press RETURN. Notice that we did not
have to type the A again. The computer is now in Assembly
mode and will stay that way until we press the return key
to exit this mode. The computer will return with .A COOS.

3).	 TYPE BRK and press RETURN

4).	 Now press RETURN to take us out of Assembly Mode.

PPMII	 INTRODUCTION TO MACHINE LANGUAGE PAGE 25

·
 5). Check that your code is correct. We will do this through
the DISASSEMBLY MODE. Type D COOO C005 and press RETURN.
This is the start and end locations of your code. You
should see the following:

•• COOO A9 48 LDA #$48
•• C002 20 D2 FF JSR $FFD2
., C005 00 BRK

6). TYPE G COOO and press RETURN to execute the code.

If you did everything correctly. you should have been returned
to the monitor after execution. The letter 'H' should appear
above the B* from the monitor start-up display. Not too
exciting. but it is a beginning. We will now explain how our H
was printed. Refer to the disassembly in step 5 above. The
first column of each line contains the memory address of the
corresponding instruction. This is like line numbers in BASIC.
The set of columns is the MACHINE CODE (HEX) for the
instruction. The last section is the ASSEMBLY CODE (MNEMONIC)
version of the instruction.

Here's what we did through the instructions we typed in.

., COOO A9 48 LDA #$48	 We placed the value of $48 into the
accumulator. This represents the
ASCII letter H.

•• C002 20 D2 FF JSR $FFD2	 Jumps to a built-in ROM subroutine
that prints a character for us.
Since we did not specify a device.
the character will print to the
screen. We could print to the
printer, cassette, and disk drive
also. As with all subroutines it
ends with an RTS. which returns to
the next instruction in our
program •

. , C005 00 BRK	 This will stop program execution
and jump back to the monitor. This
is like a BASIC STOP command.

Let's look at the program in another mode and learn another
command in the process. First press return twice to exit 0
mode. Now type M COOO. You should see the following:

.:COOO A9 48 20 D2 FF 00 00	 00

This display tells us what is stored in memory at COOO. COOl.
C002. etc. The A9 is stored in memory location $COOO. the 48
is stored in memory location $C001, and so on. Notice that the
only difference between this display and our DISASSEMBLY is
that the Assembly code is missing. Only the MACHINE CODE is
presented in the MEMORY DISPLAY MODE. Our program occupies the

PPMII	 INTRODUCTION TO MACHINE LANGUAGE PAGE· 26

·
 first six bytes. We placed OOIS in the last two bytes, but they
could be anything. They will contain whatever was left there
upon power-up. It doesn't matter what these bytes contain,
because our program will stop executing when it encounters the
BRK at $COOS. Remember, a BRK in machine language is like a
STOP in BASIC.

Before we get into all that we have experienced, letls try one
more thing. You should still be in M mode and your cursor
should be on the second character (:) of the MEMORY DISPLAY
.:COOO A9 48 etc. Using your cursor key, move over to the 48
and change it to a 49. When you press RETURN, the new value
will be entered into memory. Exit M mode - Remember how? TYPE
RETURN. Now type G COOO. You should now see an I above the B*.
By changing the 48 to a 49, we loaded the accumulator with the
ASCII code for the letter III instead of 'HI.

WHAT WE HAVE LEARNED

MONITOR COMMANDS:

A - ASSEMBLE command - This command allows us to enter a
machine language program using ASSEMBLY LANGUAGE
(MNEMONICS). This is the normal and most convenient method.

D - DISASSEMBLE command - We can check our code at any time
using this command. If the listing is extensive, we can
scroll up or down through the code with the cursor keys.

G - GO command - This command allows us to execute the program.
You may begin execution at any location you wish by
specifying the address after the G. This is particularly
useful for checking a subroutine. A subroutine (JSR) will
end with a return subroutine (RTS). If you place a BRK in
the place of the RTS, you can execute the code in question
with a G. When it encounters the BRK we will be returned to
the monitor. If you type G with no address given, it will
use the address shown for the PC in the REGISTER DISPLAY
(see below). The G command is similar to a BASIC RUN
command.

M - MEMORY COMMAND - This will display the HEX values in an
area of memory, without any assembly code.

ADDITIONAL COMMANDS

C - Compare command - Will allow us to com~are sections of
memory and will return the addresses that contain a
difference. TYPE C COOO COOS C100. The computer responds
with: C004 C003 C002 COOl COOO. This tells us that C104,
C103, C102, C10l and C100 contain different values than
those found at $C004, C003, C002, COOl, and COOO. The only
address that was not listed was COOS. This indicates that
COOS and C10S both contain the same value. TYPE D C005. Now
TYPE D C105. Both addresses should contain a $00 (BRK).

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 27

Your results may vary depending on
memory from previous operations.

what is left over in

F - The FILL command allows us to clean up memory. Upon
power-up, we find 'garbage ' throughout memory. We can clean
this up with the FILL command. Type F C008 CFFF 00. We have
just filled the memory from C008 through CFFF with 00
(BRK's). All of the 'garbage' has been replaced.

H - The HUNT command will allow us to search for a specific
sequence of bytes in memory. Type H COOO CFFF A9 49. We are
asking the computer to search through the area $COOO-CFFF
for the bytes A9 49 (LDA #$49). We must use the MACHINE
CODE (HEX) version of the instruttion when HUNTing. The
computer responds with COOO. This tells us that these bytes
were found starting at COOO. You can also search for the
ASCII equivalent of bytes by putting a SINGLE quote (I)
before them. Try H COOO CFFF II to look for the I ($49). It
should be found at $C001.

I - Interpret command - Displays the contents
values and ASCII characters side by side.

of memory in HEX

L - Load command - Allows us to load a program from disk
tape. For disk, you would type: L 'PROGRAM NAME ' ,08

or

R - Register Display - Displays the current contents of the
registers. TYPE R. You will find that as a result of our
program, the registers have changed. The PC points to C005,
SR has changed to 30 as a result of our BRK, and AC now
contains a 49 (ASCII value for I). The 49 was· loaded into
the accumulator by our program. The other registers have
stayed the same, because our program did not affect them.

S - Save command - Allows us to save a program. You would type:
S 'PROGRAM NAME ' ,08,COOO,C006. We first give the device
number (08) then the area of memory to save. Our program
only extends from $COOO to $C005 but we have to give the
ending address PLUS ONE (C005+l=C006). This extra byte is
not saved; C005 would be the last byte saved. DON'T FORGET
TO ADD ONE TO THE ENDING ADDRESS!

T - Transfer command - Allows you to make a copy of a section
of memory to another area. TYPE T COOO C005 C100. Now
cursor up and change the T to a C to compare the copy with
the original. No addresses will be listed because these two
section of memory are now identical. Check it with D COOO
C005 and D C100 C105. As you can see, the code is
identical. We will leave it up to you to clean up the
C100-C105 area with the F command.

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 28

x - EXIT to BASIC - This command allows you to return to BASIC.
If we were to EXIT now, the monitor and our program would
still be in memory. Unfortunately, some info that BASIC
needs may be gone, so we probably can't RUN a BASIC
program. We can still execute a SYS 32768 to restart the
monitor if desired.

Other monitors provide additional commands such as TRACE,
VERIFY, and PRINTER OUTPUT and HEX-DECIMAL conversions. We
recommend a ca~tridge-based monitor such as HESMON for the more
sophisticated user. This type of monitor provides some options
not available on a disk-based monitor~

ADDRESSING

IMMEDIATE ADDRESSING
Through the LDA #$49 instruction, we told the computer that we
want to load a value into the ~ccumu1ator. The data to be
loaded into A was given directly in the next byte (49) after
the LDA instruction (A9). This is called immediate addressing.
We MUST include the pound sign (#) to distinquish between
immediate and absolute addressing (see below). Failure to use #
for immediate addressing is a common error when first learning
ML programming. You can pronounce the # as 'with the value' as
in 'Load A with the value $49'.

ABSOLUTE ADDRESSING
Rather than specifying the data for LDA directly as in
immediate addressing, we can instead specify the LOCATION of
the data. This is called absolute addressing. An example of
this would be LDA $C020. In this case the CONTENTS of location
C020 will be loaded into A, rather than C020 itself. Absolute
addressing is actually much more common than immediate
addressing, which is why no special symbol like # is used to
indicate it. In our program, JSR $FFD2 utilized absolute
addressing. The FFD2 was not an instruction itself but rather
the LOCATION of an instruction. We instructed the computer to
execute the instructions starting at memory location $FFD2.

ADDITIONAL ADDRESSING MODES
There are approximately 13 address modes used by the 6510
processor. Space will not permit the use or explanation of all
of them in this chapter. Machine language books will contain a
complete explanation of these modes.

OBJECT CODE

When we assembled our code, the computer converted the ASSEMBLY
CODE (MNEMONICS)to OBJECT CODE (HEX). OBJECT CODE is called
that because it's the whole 'object' of the assembly process.
The idea is to allow us humans to deal with easily remembered
commands (assembly mnemonics) like LDA and have the assembler
convert them to HEX numbers like A9, which the computer
understands.

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 29

Our program used a JSR instruction. JSR is actually a mnemonic
(memory aid). The assembler converted the mnemonic to the
corresponding HEX code, also called the operation code or
opcode. Opcodes are always one HEX byte. For example, the
opcode for JSR is 20. Letls examine the rest of the OBJECT code
for our program.

COOO $A9 - The opcode for load the accumulator
COOl $49 - ASCII code for the letter III
C002 $20 - The opcode for jump subroutine (JSR)
C003 $D2 - Low byte of the memory address $FFD2
C004 $FF - High byte of the memory address $FFD2
COOS $00 - Opcode for BRK (BREAK)

SOME OF THE MORE COMMON MNEMONICS AND THEIR OPCODES

RTI = $40 - RETURN FROM INTERRUPT
JMP = $4C - DIRECT JUMP
EOR = $4D - EXCLUSIVE OR
RTS = $60 - RETURN FROM SUBROUTINE
SEI = $78 - SET THE IRQ DISABLE FLAG
CMP = $C9 - COMPARE REGISTER TO MEMORY
BNE = $DO - BRANCH IF NOT EQUAL

The complete list is rather extensive. The Programmer's
Reference Guide describes all the opcodes starting on Page 256.

Let's get back to programming. The program we about to create
will clear the screen, change screen colors, and print a
message to the screen.

Begin by cleaning up the work space with F COOO CFFF 00. We'll
add a few commands to our list and have a little fun in the
process. We will now assume that you know how to get into
ASSEMBLY mode. We will not prompt you with the A's (ASSEMBLE),
but we will provide the memory addresses for a reference point.
You type only the assembly code, not the addresses. To get
started in ASSEMBLY mode, you must begin by typing A COOO JSR
$E544. This is the first instruction of the program below. If
you typed the instruction correctly, you will be prompted with
the next memory address (C003). Type the rest of the program as
given below. Remember, if you make a mistake, exit ASSEMBLY
mode with the return key and retype the line. TYPE the
following:

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 30

C003 LOA #$01
C005 STA $D020
C008 STA $D021
COOB LDX #$00
COOD LOA $C100,X
COlO JSR $FFD2
C013 INX
C014 CPX #$06
C016 BNE $COOD
C018 JMP $C003
C01B BRK

You're not done yet. The instruction at $COOD tells us to load
the accumulator with the values at memory address $C100,
indexed by X (LDA $C100,X). If we are going to pick up some
values there, then we had better place them in these memory
locations (C100-C105). Following the code, we find that six
bytes will be read. The instruction CPX #$06 tells us that.

Let's place the values using the M command at $C100. If you
II • IItyped M C100, you should have a flashing cursor on the

Begin typing after the memory address. Type in the values shown
and press return. These value are now stored in memory •

. :C100 53 55 50 45 52 21 00 00

Before we activate the program, we will advise you that the
instruction JMP $C003 will place this program in an endless
loop. To break out of the program, press RUNSTOP/RESTORE. Now
activate the program by typing G COOO. There you have it, a
screen full of "SUPER!". Again, this program will not make you
a million dollars, but demonstrates a few more programming
techniques. Let's get out of the program and analyze the code.
Press RUNSTOP/RESTORE to stop. You will be returned to BASIC.
Re-activate LOMON, with SYS 32768.

Now let's analyze our program. Through the D command, we can
see the SOURCE
with us.

CODE. We will present a great deal here, so bear

COOO 20 44 E5 JSR $E544 '20' IS THE OPCODE FOR JSR
SUBROUTINE) AND '44 E5' IS
ADDRESS OF THE SUBROUTINE.

(JUMP TO
STARTING

NOTE THAT
THIS ADDRESS IS STORED IN LOW
BYTE/HIGH BYTE
IS STANDARD

(REVERSE)
PROCEDURE

ORDER.
FOR

THIS
THE

PROCESSOR. THIS INSTRUCTION OCCUPIES
3 BYTES OF MEMORY. WE ARE TELLING
THE COMPUTER TO GO TO MEMORY
LOCATION $E544 AND EXECUTE THE
BUILT-IN
THERE. IF

(ROM) SUBROUTINE
YOU GET OUT YOUR

LOCATED
MEMORY

MAP, YOU'LL SEE THAT THIS ROUTINE
WILL CLEAR THE SCREEN FOR US. ONCE
THIS TASK IS COMPLETED, WE WILL BE

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 31

RETURNED TO OUR PROGRAM, SINCE ROM

ROUTINES END WITH AN RTS.

C003 A9 01 LOA #$01 WE WILL NOW LOAD THE
(A9) WITH THE IMMEDIATE
NOTICE THE POUND SIGN
IMMEDIATE ADDRESSING!

ACCUMULATOR
VALUE $01.

(#) FOR

COOS 80 20 DO STA $0020 180 1 IS THE OPCODE FOR STORE THE
ACCUMULATOR. WE WILL STORE THE VALUE
FROM THE ACCUMULATOR ($01) , INTO
MEMORY LOCATION $D020, WHICH IS THE
LOCATION FOR BORDER COLOR. AGAIN,
NOTICE THAT THE ADDRESS IS STORED IN
LOW BYTE/HIGH BYTE ORDER.

C008 80 21 DO STA $0021 HERE WE WILL STORE THE VALUE FROM
THE ACCUMULATOR ($01) INTO THE
BACKGROUND COLOR LOCATION. THE
RESULT OF THE LAST THREE
INSTRUCTIONS IS TO TURN BORDER AND
BACKGROUND TO THE COLOR WHITE. THIS
IS THE SAME AS THE BASIC COMMANDS
POKE 53281,l:POKE 53280,1.

COOB A2 00 LOX #$00 OUR FIRST
REGISTER.
IMMEDIATE
INITIALIZE
VALUE $00.
BE USED AS

EXPERIENCE WITH THE X
THE OPCODE FOR LOX
MODE IS IA2 1. WE WILL
X BY LOADING IT WITH THE
KEEP IN MIND THAT X CAN
AN INDEX REGISTER.

COOD BD 00 Cl LDA $Cl00,X ANOTHER NEW INSTRUCTION, USING WHAT
IS CALLED INDEXED ADDRESSING. THIS
INSTRUCTION WILL CAUSE THE COMPUTER
TO LOAD A FROM MEMORY LOCATION Cl00
+ X. AS WE INCREMENT X WE WILL CAUSE
IT TO LOAD FROM SUCCESSIVE MEMORY
LOCATIONS.

COlO 20 D2 FF JSR $FFD2 PRINT WHAT IS IN THE ACCUMULATOR

C013 E8 INX INCREMENT X. THE FIRST TIME THROUGH,
WE LOADED A FROM LOCATION Cl00,
SINCE X WAS $00. AFTER INX, X WILL
CONTAIN AN $01. INX IS SIMILAR TO
X=X+l IN BASIC.

C014 EO 06 CPX #$06 COMPARE X WITH THE IMMEDIATE VALUE
#$06. WE WILL PRINT SIX BYTES
ALTOGETHER, USING A LOOP SET-UP.

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 32

C016 DO F5 BNE $COOD	 'DO' IS THE OPCODE FOR BRANCH IF NOT
EQUAL. WE COMPARED X TO #$06. IF
THEY ARE NOT EQUAL, WE NEED TO
CONTINUE OUR PRINTING LOOP, SO WE
BRANCH BACK UP TO $COOD. IF X DOES
EQUAL #$06, IT WON'T BRANCH BUT WILL
FALL THROUGH TO THE NEXT INSTRUCTION
AT $C01a, ENDING THE LOOP. NOTE THAT
THE $COOD IS NOT TRANSLATED DIRECTLY
INTO HEX CODE, BUT RATHER GIVEN AS A
RELATIVE POSITION. THE F5 STANDS FOR
A BACKWARDS BRANCH OF 11 BYTES
($0100 - $F5 = SOB = 11 DECIMAL)

C018 4C 03 CO JMP $C003	 '4C' IS THE OPCODE FOR JMP. THIS IS
A DIRECT JUMP, LIKE BASIC'S GOTO. AS
A RESULT OF THIS INSTRUCTION, THE
PROGRAM WILL BE PLACED IN AN ENDLESS
LOOP.

C01B 00 BRK	 THE PROGRAM WILL NOT REACH THIS
INSTRUCTION, BECAUSE OF THE JMP
INSTRUCTION BEFORE IT. IT'S GOOD
PRACTICE TO INSERT A BRK FOR
DEBUGGING PURPOSES.

There's a lot to get a hold of here. Go through the explanation
until you understand it. Try ~hanging the program to print more
characters. If you want to tell it to print more, add them to
your message at $C100 and change the CPX to accommodate the
additional letters. While we're on the subject, let's look at
$C100, with I C100. There's our message. The values next to the
message are the ASCII codes for the letters. You will recall
that we loaded the accumulator with these values. We printed
them through the KERNAL subroutine that prints a character
(FFD2).

By the way, the BNE instruction actually tests the Z FLAG. The
compare instructions such as CPX look at the difference between
the two number to be compared. If there is no difference, the Z
(ZERO) flag will be set (1). If there is a difference, Z will
be cleared (0) and the BNE will cause a branch.

We saved a great deal of program space and our time by using a
loop to do our printing, with the X register as an index. The
alternative would be to use a pair of instructions (load the
accumulator and jump to the print routine) for EACH byte to
print. Loops are one of the elementary techniques used in any
type of programming.

You may be asking another question at this time. How did we
know which ASCII codes to use and where the screen and border
color locations were? These were taken right out of a memory
map. Refer to the MEMORY MAP SECTION of this manual.

PPMI I	 INTRODUCTION TO MACHINE LANGUAGE PAGE 33

Through this chapter, we hope we have removed some of the fear
associated with machine language programming. This chapter
should mark a beginning for those wishing to work with machine
language. Don1t stop here! Continue your investigation and
experimentation. Try altering the examples giv~n by adding
features to them. Investigating your MEMORY MAP will also
reveal some interesting locations to work with. Once you have
exhausted the possibilities presented here, investigate other
machine language programs. There is much to be learned through
a study of this kind.

HAVE FUN!

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 34

AUTO-BOOTS

One of the more common forms of program protection is the use
of an auto-boot. Programs of this type are located in low
memory ($0100-0400). The purpose of a Iboot' program is to load
and execute the Imain l program. An AUTO-BOOT that is set up
properly and loaded with ,B,l, will do this automatically. This
makes the job of the 'unprotector l a bit more complicated, but
certainly not impossible. We must understand how a program of
this type is constructed before we can begin to unprotect it.

called the BASIC Creating boot that will

We will analyze three such programs.

Let's start with
through $0303.

a boot program that will reside from $02A7

$02A7 - $0303

When we check a memory
unused area of memory.

map,
Just

we find
past this

that $02A7-02FF
at $0302-0303 is a

is an
vector

warm-start vector. a
load into this area of low memory and replace BASIC's
warm-start vector with the program1s starting address will
result in an AUTO-BOOT. We may examine this type of program
through LOMON, or we may make our corrections on the disk. The
more recent Track and Sector Editors include a disassembly
feature that can be very useful in the examination of a program
stored in this area.

If you attempt to capture the code after a reset, you will find
that the code has been erased. This is performed through the
normal initialization process. (Refer to the chapter on
INTERRUPTS for an extensive look at the RESET routine.)
Usually, an auto-boot program is used to hide the loading of a
second bQot program. The second boot will load the main program
and do the actual error-checking, then JMP to the proper entry
point of the main program. Checking through the code of the
first boot will probably reveal the starting address of the
second boot.

After a program loads, the BASIC operating system in the C-64
will perform the KERNAL CLALL ($FFE7) subroutine. This
subroutine will close all open files and perform an indirect
jump based on BASIC's warm-start vector located at $0302-$0303.
With that in mind, let's begin the construction of our first
auto-boot.

Storing a boot program from $02A7 through $0303 makes it
possible for us to utilize BASICls warm-start vector
($0302-$0303) as a pointer for our program1s starting address.
We will make this clear through the disassembly of our first
auto-boot program. We will design our program to begin at $02A7
and end at $0303. This will store our starting address ($02A7)
into BASIC's warm-start vector. When the KERNAL CLALL ($FFE7)

PPMII AUTO BOOTS PAGE 35

subroutine is called, it will end by jumping to our program
through this vector.

LOAD 'AUTOBOOT1 ',8,1 from your program disk. This program will
automatically load and run the program called IATB1 I. The
disassembly of 'AUTOBOOT1' is as follows:

02A7 JSR $E544
02AA LOA #$83
02AC STA $0302
02AF LOA I$A4
02B1 STA $0303
02B4 LOA #$9B
02B6 STA $0020
02B9 STA $0021
02BC LOA #$00
02BE STA $0286
02C1-02C9 NOP
02CA LOA #$37
02CC STA $01

02CE LOA #$08
0200 LOX $BA
0202 LOY #$01
0204 JSR $FFBA
0207 LOA #$04
0209 LOX #$FO
02DB LOY #$02
0200 JSR $FFBD
02EO LOA #$00
02E2 JSR $FFD5
02E5 JSR $A68E
02E8 JSR $A660
02EB JMP $A7AE

02EE-02EF NOP

02FO 41
02F 1 54
02F2 42
02F 3 31

02F4-02FF BRK
03008B·
0301 E3
0302 A7
0303 02
0304 7C

CLEAR THE SCREEN
RESTORE BASIC'S WARM-START VECTORS
IF WE DO NOT PLACE
THESE VECTORS, OUR
AN ENDLESS LOAD
LOAD AND STORE THE
BORDER
BACKGROUND
LOAD AND'STORE THE
CURRENT CURSOR COLOR
SPACE FOR EXTRA CODE IF
NORMAL VALUE FOR BASIC
STORE AT .$01
IF YOUR PROGRAM
OUT BASIC, YOU
LOCATION $01.
FILE NUMBER
CURRENT DEVICE

THE NORMAL VALUES IN
PROGRAM MAY GO THROUGH

COLOR

COLOR

REQUIRES

GREY INTO:

BLACK INTO:

NEEDED

THAT YOU FLIP
WOULD STORE A #$36 IN

NUMBER
SECONDARY ADDRESS
KERNAL SETLFS - SET FILE SPECIFICATIONS
LENGTH OF FILE NAME
LOW BYTE ,OF FILENAME MEMORY ADDRESS
HIGH BYTE OF FILE NAME MEMORY ADDRESS
KERNAL SETNAM - SET FILE NAME
SELECT LOAD FUNCTION
KERNAL LOAD - LOAD RAM FROM A DEVICE
WE WILL NOW RESTORE BASIC POINTERS
CLOSE ALL FILES AND INITIALIZE BASIC
BASIC'S INTERPRETER LOOP,
ONCE WE ARE' FINISHED LOADING, WE WILL JUMP
TO BASIC £ECAUSE THE PROGRAM WE WILL BE
LOADING WILL BE STORED THERE.
IF YOUR PROGRAM IS IN MACHINE
WOULD JUMP TO THE ENTRY POINT
EXTRA SPACE
NEXT FOUR BYTES ARE FILE NAME
A
T
B
1

SPACE FOR LONGER
DEFAULT VALUE
DEFAULT VALUE
LOW BYTE OF'OUR
HIGH BYTE OF OUR

FILENAMES
00 NOT CHANGE
DO NOT"CHANGE
PROGRAM START

PROGRAM START

CODE, YOU
HERE.

IN HEX

ADDRESS
ADDRESS

PPMII AUTOBOOTS PAGE 36

For those just starting out, we feel a bit more explanation is
in order.

There are many important concepts to be learned from this boot
construction. One important task is to restore BASIC pointers.
If your second program is stored in BASIC, the interpreter must
be intact. Failure to reset pointers may cause your program to
lock up. If your program is in machine language, you won't have
to worry about the 'clean-up' process.

The starting address and the program name may be changed
through the use of the M command of your ML monitor. To change
the name of the program to be loaded, simply store the new
programs name at $02FO. Use the M command to examine the area
of memory from $02FO to $02F7 (M 02FO 02F7). Now type in the
HEX (ASCII) values for your program name, beginning at $02FO,
then press 'RETURN'. The same process is used to store our
program's starting address at $02EC and $02ED. Remember, the
program's starting address must be stored in the standard low
byte/high byte fashion.

It should also be noted that we are using the most common
KERNAL calls. You may find programmers using $FFB4 (COMMAND
SERIAL TO TALK), $FFBl (COMMAND THE SERIAL BUS TO LISTEN) and
others. The KERNAL calls are still easy to spot, because they
begin with $FF--. Keep your memory map handy when you are
tracing a program. This auto-boot made it easy for us to see
the next file to be loaded, because the LOAD message is printed
on the screen. Other programmers won1t be so considerate. By
inserting the KERNAL routine $FF90 (CONTROL KERNAL MESSAGES),
we may hide the load message for the next program to be loaded.

Our second auto-boot example works by changing the KERNAL CLALL
VECTOR (whereas the first auto boot used the BASIC warm start
vector). The KERNAL CLALL VECTOR is located in memory at
$032C-$032D. Just past this vector, at $0334-033B, is an unused
area of memory followed by the cassette buffer at $033C-03FB
and another unused area at $03FC-03FF. This gives us plenty of
room to put our auto boot program ($032C-$03FF).

$032C-$032D KERNAL CLALL VECTOR - CLOSE ALL FILES AND I/O
CHANNELS

Through this programs construction, we will change the KERNAL
CLALL VECTOR to point to our program's starting address, which
is $0334. The normal operation of the CLALL VECTOR is to close
all files that have been opened. The CLALL is part of BASIC's
normal load routine. As such, it is called automatically at the
end of a BASIC load, either direct from the keyboard or from a
program. Before we construct the boot, let's trace the KERNAL
CLALL routine.

PPMII AUTOBOOTS PAGE 37

FFE7 JMP $F32F
F32F LDA #$00
F331 STA $98 NUMBER OF OPEN FILES=O
F333 LOX #$03
F335 CPX $9A DEFAULT OUTPUT DEVICE NUMBER
F337 BCS $F33C SMALLER THAN 3
F339 JSR $EDFE SEND UNLISTEN COMMAND
F33C CPX $99 DEFAULT INPUT DEVICE NUMBER
F33E BCS $F343 SMALLER THAN 3
F340 JSR $EDEF SEND UNTALK COMMAND
FE43 STX $9A RESET OUTPUT TO SCREEN
F345 LOA #$00
F347 STA $99 RESET INPUT TO KEYBOARD
F340 RTS

Now 1et ' s look at our second auto-boot. Load the program t
through LOMON, with L 'AUTOBOOT2 1 ,08. The disassembly is as
follows:

032C 34 ??? USE THE M COMMAND TO STORE OUR AUTO BOOT'S
0320 03 ??? STARTING ADDRESS - DON'T FORGET LOW BYTE
FIRST!
032E - 0333 NO CHANGES IN THIS SECTION OF MEMORY
0334 JSR $FF8A RESTORE DEFAULT VECTORS
0337 JSR $FFE7 CLOSE ALL FILES
033A LOA #$02 FILE NUMBER
033C
033E
033F

LOX
TAY
JSR

$BA

$FFBA

CURRENT DEVICE NUMBER (08)
SECONDARY ADDRESS ($02)
SET FILE SPECIFICATIONS

0342 LOA #$04 LENGTH OF FILE NAME-4 BYTES LONG
0344 LOX #$50 LOW BYTE OF FILE NAME MEMORY ADDRESS
0346 LDY #$03 HIGH BYTE OF FILE NAME MEMORY ADDRESS
0348 JSR $FFBD SET FILE NAME
034B LDA #$00 SELECT LOAD FUNCTION
0340 JSR $FFD5 LOAD RAM FROM A DEVICE
0350 STX $2D
0352 STY $2E SET START OF BASIC VARIABLES
0354 JSR $A68E PROGRAM POINTER TO BASIC START
0357 JSR $A660 CLOSE FILES AND INITIALIZE BASIC
035A JMP $A7AE BASIC'S INTERPRETER LOOP

NEXT FOUR BYTES ARE FILE NAME IN HEX
0350 41 A
035E 54 T
035F 42 B
0360 32 2

Once you have examined the code t you may see it in action with t
LOAD 'AUTOBOOT2 1 ,8,1 and press RETURN. The program will load
and execute a second program called 'ATB2 1 As with AUTOBOOT1 t•

the program we are loading is stored in BASIC. If the program
;s to execute proper1Yt we must restore BASIC's pointers.
BASIC's pointer are reset by the code from $0354 to $035C. We
may also use this auto boot to load a machine language program t
by replacing the JMP to BASIC's INTERPRETER LOOP with a JMP to
your starting address. If you have stored routines beneath the
BASIC ROM don't forget to add the code to flip-out BASIC.

PPM I I AUTO BOOTS PAG 38

The second auto boot is also a simple boot. Keep in mind that a
RESET of the computer will erase this code through the
initialization process. Notice also that our code extends into
the CASSETTE BUFFER ($033C-$03FB). Most disk based programs
will not have any use for the cassette buffer.

Both of the auto boot programs we have investigated so far are
a source of aggravation to the 'unprotector l , but the code is
still accessible. As long as we know where they are stored, we
may LOAD and examine the code from a machine language monitor.
The 'unprotector' may be faced with a job of hunting through
memory for the auto boot, but at least the code is accessible.
Not so with the next type of auto-boot. The program is
'AUTOBOOT3 1• It will load and execute 'ATB3'. LOAD
'AUTOBOOT31,8,1. If you try to load this program through a
monitor, you will find that the program takes control of the
computer. All efforts to regain control are foiled. A RESET
will only erase the code. This is due to the construction of
the program and its place in memory. We will suggest ways to
gain access to the code, but first let's cover the
construction.

This program will fill the STACK with our starting address.
What does it all mean? The concepts here are no more difficult
to grasp than those presented in the previous two programs, but
they do require a little knowledge of the STACK. Stay with it
and its operation should become clear to you. Stack operations
are explained in the chapter on machine language, but a review
may be in order.

The STACK is located in memory from $0100 to $OlFF. The STACK
is used starting from its highest memory location $OlFF to the
lowest $0100. The last address placed on the STACK is the first
address pulled out. In this auto boot, we are placing $02
throughout STACK memory ($OlOO-$OlFF). The KERNAL LOAD routine
is a subroutine. A subroutine ends with a RETURN FROM
SUBROUTINE (RTS). As with all subroutines, the address of the
JSR $XXXX is pushed on the stack prior to executing the
subroutine. After the sUbroutine has executed, the return
address is pulled off the STACK and incremented. This address
is placed in the program counter, which contains the address of
the next command to be executed. Once the program counter gets
its address from memory, it is incremented by one, pointing to
the next memory location to execute. In this boot, $0202 will
be pulled off the STACK since it is full of $02 I s. After it is
incremented, it will point to $0203. This will be the start of
our program code. We could fill the STACK with other memory
locations, but be sure that the bytes you use are the same (03
03, 04 04). We cannot be sure which byte will be pulled off the
STACK first, so we make all these bytes identical. This way, we
may be sure of where our program will start. Remember, the
address pulled off of the stack is incremented by one prior to
being placed on the program counter.

PPMII AUTO BOOTS PAGE 39

0100 -OlFF 02 THIS ENTIRE AREA WILL BE FILLED WITH 02 1 S.
0200 BRK UNUSED
0201 BRK UNUSED
0202 BRK UNUSED
0203 LOA #$04 LENGTH OF FILE NAME
0205 LOX #$39 LOW BYTE OF FILE NAME MEMORY ADDRESS
0207 LOY #$02 HIGH BYTE OF FILE NAME MEMORY ADDRESS
0209 JSR $FFBD KERNAL SETNAM - SET THE FILE NAME
020C LOA #$02 FILE 2
020E LDX #$08 DRIVE 8
0210 LOY #$02 SECONDARY ADDRESS
0212 JSR $FFBA KERNAL SETLFS - SET FILE SPECIFICATIONS
0215 LOA #$00 SELECT LOAD FUNCTION
0217 JSR $FFD5 KERNAL LOAD - LOAD RAM FROM A DEVICE
021A STX $20
021C STY $2E SET BEGINNING OF BASIC VARIABLES

THE FOLLOWING CODE IS FUN AND BRINGS IN A
NEW CONCEPT. NOTICE THE VALUES BEING
LOADED. IF WE CONVERT THESE TO DECIMAL, AND
LOOK UP THE CHR$ CODES, WE FIND THAT THE
WORD RUN AND A CARRIAGE RETURN ARE BEING
STUFFED INTO THE KEYBOARD BUFFER. THIS WILL
RESULT IN AN AUTO-RUN OF OUR BASIC PROGRAM.

021E LOA #$52 R - DECIMAL 82
0220 STA $0277 THE KEYBOARD BUFFER IS LOCATED IN MEMORY

FROM $0277 THROUGH $0280.
0223 LOA #$55 U - DECIMAL 85
0225 STA $0278
0228 LOA #$4E N - DECIMAL 78
022A STA $0279
0220 LOA #$00 CARRIAGE RETURN - DECIMAL 13
022F STA $027A
0232 LOA #$04 LOAD AND STORE 4 INTO
0234 STA $C6 NUMBER OF CHARACTERS IN KEYBOARD BUFFER
0236 JMP $A474 BASIC'S READY MESSAGE, READ KEYBOARD

NEXT FOUR BYTES ARE FILE NAME IN HEX
0239 41 A
023A 54 T
023B 42 B
023C 33 3

The main question before us is how to gain access to the code.
The easiest way is to purchase a Track and Sector Editor that
contains a disassembly feature. You may then examine the code
and make the necessary changes on the disk. If you do not have
such a program, there is another way.

Once you have determined, through your Track and Sector Editor,
that the program resides at $0100, you may change the starting
address to another value, say $C100 (see the PPM volume I). You
may accomplish this by locating the first block of the file in
question and change byte 04 from 01 to Cl. Remember, the 3rd
and 4th bytes contain the starting address of the program. Once

PPMII AUTO BOOTS PAGE 40

this address has been changed, we may load it normally and
examine the code through LOMON. The code is now located from
$C100 - $C23C. You must keep in mind that the code would
normally reside at $0100, so you must think of the 'CIS' as
'O's'. From here you may make any necessary changes. You would
now save out the altered program in the standard manner. The
last step is to go back in with your Track and Sector Editor
and change the starting address back from Cl to 01.

The program called 'AUTOBOOT3C100' on your PROGRAM DISK is a
copy of 'AUTOBOOT3', but it resides at $C100. Load the program
and compare the code with the original version included here.
You will find that the only difference is in where the code
resides in memory.

If you wish to use an auto-boot program that resides at $0100
and above, you must construct it in another area of memory and
change the load address on the disk. We suggest that you
construct it at $C100.

This type of auto-boot program requires that you work with your
Track and Sector Editor. The PROGRAM PROTECTION MANUAL VOLUME I
contains all the information you'll need to make alterations on
the disk, but for your convenience we will review a bit here.

Let's take a look at a typical TRACK 18 SECTOR 01. This is the
first block of the DISK DIRECTORY. There is a great deal of
information contained in a DIRECTORY listing. It will tell us
the names of the files contained on the disk, the file type,
the location of the files on the disk, and the number of blocks
in each file. This should become clearer through the print-outs
included here. Let's take a look:

PPMII AUTOBOOTS PAGE 41

ASCII MODE

o 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

o . . • M 0 V E 8 A SIC
.1 · . .

2 • • • • .01 S K C H E C K E
3 R

4 • • • • · I 0 C H E C K E R
5 ·
6 • • • • • A P P END
7

8 • . . • • 8 L 0 C K A L &
9 F R E E ·
A • • • • • 0 I S K ADD R C
8 HAN G E .

c01 S K 0 R
o ·
E • • • 8 A C K U P 228
F % •

As you can see, there are eight programs listed on this block
of the directory. ASCII mode is very helpful, but it is HEX
mode that will reveal the information we will need to locate
our files. The next printout will be the HEX listing of 18/01.

HEX MODE

o 1 2 3 456 7 8 9 A 6 C 0 E F

o 12048211 00404F56 45204241 534943AO
1 AOAOAOAO AOOOOOOO 00000000 00000900
2 00008211 01444953 46204348 45434645
3 52AOAOAO AOOOOOOO 00000000 00000300

4 00008211 09494420 43484543 464552AO
5 AOAOAOAO AOOOOOOO 00000000 00000400
6 00008211 09494420 43484543 464552AO
7 AOAOAOAO AOOOOOOO 00000000 00000100

8 00008211 03424C4F 43462041 4C202620
9 46524545 AOOOOOOO 00000000 00000300
A 00008211 11444953 48204144 44522043
8 48414E47 45000000 00000000 00000400

C 00008213 00444953 48204452 AOAOAOAO
o AOAOAOAO AOOOOOOO 00000000 00001700
E 00008210 00424143 48555020 323238AO
F AOAOAOAO AOOOOOOO 00000000 00002500

PPMII AUTO BOOTS PAGE 42

We will analyze the code in the first directory entry. If you
bdck up to ASCII, you will see that this is the file called
'MOVE BASIC'. We chose this file because it is the first entry
and contains some
reference points.

additional information. Use the grid for

GRID HEX CODE INFORMATION
0/0 1204 These two bytes contain the HEX values for the

link to the next track and sector. The decimal
eqivalent is 18/04. The next block of our
directory will be at TRACK 18, BLOCK 04.

0/2 82	 This byte is where the type of file is given. The
82 tells us that this is an active (not
scratched) program file. Check the P.P.M. VOL.I
for a description of the other file types.

0/3 1100	 These two bytes contain the Track and Sector for
the first block of this file. The decimal
eqivalent is 17/00. The first block of the file
called 'MOVE BASIC' will be located at TRACK 17,
BLOCK 00.

0/5 4D4F	 ='MO' This is the beginning of our program name.
The name 'MOVE BASIC' will end at O/E. Sixteen
bytes are reserved for a program name. If the
name is shorter than the space reserved, the
space will be filled with shifted spaces (AD's in
HEX).

1/5 000000	 These three bytes are reserved for relative file
entries. They would contain pointers used by
files of this type.

1/8 00000000	 These four bytes are normally 00.

l/C 0000	 These two bytes are reserved for the DOS. They
will be used during a Save and Replace operation.

liE 0900	 The last two bytes tell us the number of blocks
that the program occupies on the disk, in low
byte/high byte order. MOVE BASIC occupies 9
blocks.

The other file entries follow the same format. The only
difference is in the first two bytes of the entry, which will
contain 00/00.

As you can see, the directory can offer a great deal of
assistance to those who know how to read it. We will now
examine the first block of the program called 'AUTOBOOT2', from
the disk that accompanies this manual. When you examine the
directory of the P.P.M.VOL.II disk, you find that 'AUTOBOOT2'
is a program file (82), bytes three and four tell you its
location on the disk, and you learn that it occupies 1 block on

PPMII	 AUTO BOOTS PAGE 43

the disk ($01 00). The first block of a file contains some very
special information. Let's take a look at that block in HEX
MODE.

'AUTOBOOT2 1
- HEX MODE

o 1 2 3 456 7 8 9 A B C D E F

o 00392C03 340366FE A5F4EDF5 208AFF20
1 E7FFA902 A6BAA820 BAFFA904 A25DA003
2 20BDFFA9 0020D5FF 862D842E 208EA620
3 60A64CAE A7415442 32000000 00000000

4 00000000 00000000 00000000 00000000
5 00000000 00000000 00000000 00000000
6 000082AA 48B2B528 4D54AD32 3536293A
7 4CB24D54 AB323536 AC483A97 34332C4C

8 3A973434 2C483A80 00000054 494E5545
9 22009EOA F401A141 243A8B41 24B22222
A A7353030 00A40AFE 018EOOOO 00414C59
B 4A454422 00BB08BE 008D3239 30004C59

C C800444E B23800EO 08DC0085 22931111
D 20205748 49434820 54524143 4B20223B
E 545200EA 08DD0053 4BB23230 00FB08DE
F 008B5452 B13137A7 53455B31 38000C09

GRID HEX CODE	 INFORMATION
010 00	 This byte give us the next track in the program

link. In this case, the 00 tells us that this i s
the last block of the file.

Oil 39	 This byte would normally contain the sector for
the next link in the file. Since this is the last
block, this byte tells us and the disk drive
where the program ends. Check the grid at 3/9.
This is the last good byte of information for
this file. The rest of the information on this
block is 'garbage'.

0/2 2C	 This is the low byte of our memory address. This
is a MACHINE LANGUAGE program stored at $032C.

0/3 03	 This is the high byte of our memory address. If
you would like to change the load address, you
would change these two bytes.

0/4 - 3/9	 This is the data for the program.

Reading the information contained on the disk is essential to
those wishing to study 'AUTOBOOTS'. Beginning here can save you
a great deal of time. Your first attempts at altering disk
information should be done on a BACKUP disk. Do not make
alterations to the original disk if you can avoid it. If you

PPM I I	 AUTOBOOTS PAGE 44

must, then make a note of the changes you made so that you may
return the disk to its original form.

You will find that all of this information will become clearer
with experience. Begin by working with the examples we have
included on your PROGRAM DISK.

PPMII AUTO BOOTS PAGE 45

INTERRUPTS AND RESETS

There are three types of interrupts built in to the 6510
processor used on the Commodore 64. An interrupt is a way to
force the processor to stop what it is doing and execute
another set of instructions. It is different from a RESET in
that it is only temporary, that is, the processor can pick up
where it left off before it was so rudely interrupted. In this
chapter we will explore each type of interrupt and analyze the
corresponding KERNAL ROM routine. As we shall see, each ROM
routine is controlled by a RAM vector that may be changed by
the programmer. The interrupts are:

INTERRUPT TYPE ROM VECTOR RM1 VECTOR

NMI - NONMASKABLE INTERRUPT $FFFA-$FFFB $0318-$0319

IRQ - INTERRUPT REQUEST $FFFE-$FFFF $0314-$0315

BRK - BREAK $FFFE-$FFFF $0316-$0317

The initial response to any of the three interrupts is similar.
The processor will finish the instruction it is currently
executing and then take the following steps:

1).	 The current value of the program counter, which contains
the address of the next instruction, is pushed onto the
stack. The high byte is put on the stack first, followed by
the low byte. (Note: the stack grows backwards in memory
from $OlFF to $0100).

2).	 The processor status register, which contains all the flags
(carry, etc.) is pushed onto the stack.

3).	 The processor then consults a specific place in memory for
the interrupt routine. For an NMI it looks to $FFFA-$FFFB
and for an IRQ or BRK it looks to $FFFE-$FFFF. These
locations contain the STARTING ADDRESS of the corresponding
interrupt routine vector. The processor then jumps to the
starting address given and begins executing the code there.

WHERE it looks initially ($FFFA-B or $FFFE-F) in step 3 above
CANNOT BE CHANGED; the processor is designed at the hardware
level to do this. Since the KERNAL ROM normally occupies these
locations on the C-64, we cannot easily change the CONTENTS of
these locations either. So how can we change what happens at
interrupt? As we shall see, the interrupt routines pointed to
by these ROM vectors all check another location to decide where
to proceed. These other locations are in RAM (RAM vectors), and
we CAN alter them.

Once an interrupt routine has finished its job (whatever that
may be) it should be able to have the processor resume its
operations at the point it was interrupted. To do this it must
be able to restore the status register and program counter (PC)
to their pre-interrupt values. Remember, these values were

PPMII	 INTERRUPTS AND RESETS PAGE 46

pushed onto the stack in steps 1 & 2, so they are still
available. The 6510 processor has a special instruction called
RTI (RETURN FROM INTERRUPT) which automatically restores these
values. Since it restores the program counter, execution
continues at the same point it was interrupted. Every
interrupt routine should end with an RTI.

Although thoy share some similarities, the three interrupts
have important differences too. The 6502/6510 microprocessor is
housed in a plastic case with 40 connecting pins, two of which
are dedicated to IRQ and NMI. When a signal is applied to one
of these' pins, the corresponding interrupt routine will be
executed. This is the only way to generate the IRQ and the NMI
interrupts.

The main difference between the IRQ (INTERRUPT REQUEST) and the
other two interrupts is that we can prevent (mask) the IRQ
signal from being recognized by the processor if we wish. We do
this by using the machine language instruction SEI (SET
INTERRUPT DISABLE). This instruction affects ONLY the IRQ
interrupt. No IRQ signal will be noticed until after we do a
ClI (CLEAR INTERRUPT DISABLE) or RTI (RETURN FROM INTERRUPT)
instruction.

The second type of interrupt is BRK (BREAK). It differs from
the others in that BRK is generated through the use of a
special machine language instruction (BRK) rather than an
electronic signal. When a BRK occurs it causes a special flag
(the BRK flag) to be set in the processor status register.
Although BRK and IRQ actually jump to the same ROM routine
initially, the BRK flag is used to tell them apart.

The third type of interrupt is the NMI (NONMASKABlE INTERRUPT).
As the name implies, NMI cannot be disabled (masked) using SEI.
It can occur at any time, even while an IRQ or BRK routine is
being executed. In fact, even if an NMI and another interrupt
occur simultaneously, the NMI is given priority.

I want to emphasize the similarities and differences noted
above are
Commodore

a function of the processor itself, rather than
64 as a whole. Now letls take a detailed look at

the
each

of the KERNAl ROM routines
what the C-64 uses them

executed by these interrupts to
for. Weill start with the

see
NMI

interrupt.

NMI (NONMASKABlE INTERRUPT) ROM
RAM

$FFFA-B
$0318-9

($FE43)
($FE47)

PPMII INTERRUPTS AND RESETS PAGE 47

Here is the main NMI interrrupt routine for reference in the
following discussion:

FE43
FE44
FE47
FE48
FE49
FE4A
FE4B
FE4C
FE4E
FE51
FE54
FE56
FE59
FE5B
FE5E
FE61
FE64
FE66
FE69
FE6C
FE6F
FE72
FE73
FE76
FE77
FE79
FE7B
FE7E
FE80
FE82
FE85
FE88
FE8B
FE8C
FE8E
FE90
FE92
FE94
FE97
FE9A
FE9D
FEAO
FEA3
FEA4
FEA6
FEA8
FEAB
FEAE
FEAF
FEB1

SEI
JMP
PHA
TXA
PHA
TYA
PHA
LDA
STA
LDY
BMI
JSR
BNE
JMP
JSR
JSR
BNE
JSR
JSR
JSR
Jt~P
TYA
AND
TAX
AND
BEQ
LDA
AND
ORA
STA
LDA
STA
TXA
AND
BEQ
AND
BEQ
JSR
JI~P
JSR
JSR
JMP
TXA
AND
BEQ
JSR
JMP
TXA
AND
BEQ

($0318)

#$7F
$DDOD
$DDOD
$FE72
$FD02
$FE5E
($8002)
$F6BC
$FFEl
$FE72
$FD15
$FDA3
$E518
($A002)

$02A1

#$01
$FEA3
$DDOO
#$FB
$B5
$DDOO
$02Al
$DDOD

#$12
$FE9D
#$02
$FE9A
$FED6
$FE9D
$FF07
$EEBB
$FEB6

#$02
$FEAE
$FED6
$FEB6

#$10
$FEB6

SET INTERRUPT DISABLE (NO IRQ INTERRUPTS)
NMI RAM VECTOR (CONTAINS $FE47 NORMALLY)

THIS CODE WILL SAVE THE A, X, AND Y
REGISTERS

CIA #2 INTERRUPT CONTROL REGISTER

BRANCH IF RS-232 ACTIVE
CHECKS FOR CBM80 AT $8000
IF NOT, CONTINUE
IF PRESENT, JUMP TO WARM-START ROUTINE
SET FLAG FOR STOP-KEY
SCAN STOP KEY
BRANCH IF STOP KEY NOT PRESSED
RUN/STOP-RESTORE PRESSED - SET I/O VECTORS
INITIALIZE I/O
INITIALIZE I/O AND CLEAR SCREEN
TO BASIC WARM-START

NMI INTERRUPT CONTROL CIA

DATA PORT A-SERIAL BUS~ RS-232

CIA #2 INTERRUPT CONTROL REG

RS-232 IN

RS-232 OUT
RS-232 OUTPUT
RESTORE AND EXIT

PPI"1 I I INTERRUPTS AND RESETS PAGE 48

FEB3 JSR $FF07 RS-232 OUT
FEB6 LOA $02Al
FEB9 STA $OOOD
FIBC PLA THIS CODE RESTORES THE A,X AND Y REGISTERS
FEBD TAY
FEBE PLA
FEBF TAX
FECO PLA
FECl RTI RETURN FROM INTERRUPT AND CONTINUE PROGRAM

On the Commodore 64, an NMI can be generated by a device on the
RS-232 (user) port or by the RESTORE key. In either case, the
processor will consult locations $FFFA-$FFFB. These two bytes
contain a vector (pointer) to the interrupt routine in ROM. The
values found here are $43 FE, respectively, which means the
routine is at $FE43 (remember the address bytes are stored in
reverse order). The processor will then proceed to $FE43 and
be~in executing the routine there.

The routine at $FE43 immediately disables the IRQ (with an SEI
instruction) so that it won't be interrupted itself. Next, it
consults (through JMP ($0318)) another vector located at $0318
& $0319, which is in RAM. The values found there tell it where
to proceed next. Normally, this RAM vector points to $FE47
which simply continues the NMI routine. Since this vector is
in RAM, however, it can be easily changed to point to our own
routine if desired.

In the normal ROM routine at $FE47, it immediately pushes the
values of the A, X and Y registers onto the stack because it
needs to use them. Next the NMI routine checks a location on
CIA #2 to see if the NMI was generated by an RS-232 device,
such as a printer or modem. If so, it jumps to the routine to
handle RS-232 communications. We're not concerned with RS-232,
so we won't discuss it further. In the following discussion
we'll assume the NMI was generated by the RESTORE key.

The NMI routine next checks for the presence of CBM80 at $8000.
This indicates an autostart program, usually a cartridge. If
the CBM80 is present, the values stored at $8002 & $8003 will
be used as a 'warm start' vector. Processing will continue at
the location indicated at $ 8002 & $8003 (vectors). We may fool
the computer into thinking that a cartridge is present by
storing a CBM80 at $8000. This allows a programmer to utilize
the NMI routine to restart a program in progress. For more
detailed information on the CBM80, refer to the original
PROGRAM PROTECTION MANUAL.

If there is no CBM80 at $8000, the NMI routine checks the
RUN/STOP key. If it is being pressed it is a signal to
warm-start BASIC. In this case the routine performs some I/O
initialization and clears the screen. Finally, it consults the
BASIC warm-start vector at $A002 & $A003 and jumps to the
location specified there.

PPMII INTERRUPTS AND RESETS PAGE 49

If RUN/STOP is not pressed the routine will continue through
some code and evenua11y restore the A, X and Y registers from
the values that were saved on the stack. Finally it executes an
RTI which restores the processor status, re-enab1es IRQ's and
continues execution at the point it was interrupted by the NMI.

Before we continue our study of the other interrupts, let's
explore the CBM80 set-up in terms of program protection. During
our detour, weill need to explore the RESET and RAM TEST
ROUTINES. An understanding of these routines can be invaluable
in program protection.

We find a great deal of built-in security for programs that
utilize the CBM80. The auto-start feature for cartridges is
designed to keep the code from being exposed on RESET. The same
protection is provided to any program that uses CBM80 and the
RESTORE key to auto-start itself. We have already explored and
utilized the techniques used to protect a cartridge in the
PROGRAM PROTECTION MANUAL VOLUME I, but auto-start programs
that reside in RAM require another look.

If the CBM80 is in RAM, it can be defeated by simply preventing
the computer from seeing this part of memory. A cartridge uses
the EXROM and GAME lines of the cartridge port to control the
memory configuration of the C-64. See the chapter on the 6510
and the PLA for a complete breakdown of how this is done. For
our purposes here we only need to look at the function of
EXROM.

Normally, the EXROM line stays at a HIGH level (+5 volts). In
this state we will have RAM available at $8000-$9FFF (assuming
everything else is normal). If EXROM is forced to a LOW level
(0 volts) by grounding it, the computer expects to see
cartridge ROM there instead of RAM. However, REGARDLESS of
whether there is anything plugged into the cartridge port or
not, the computer will NOT be able to see the RAM in this area.
If EXROM is grounded after loading and running a CBM80-based
program, all of a sudden the program can't see its auto-start
when we hit RESTORE. If the computer is RESET, we'll see the
familiar blue screen and start-up message, except that we'll
see 30719 BASIC BYTES FREE instead of the normal 38911. Also, a
$55 will have been put at $8000 (RAM). Why all this happens is
a matter for further exploration.

We need to examine the RESET routine with concentration on the
RAM TEST routine ($FD50). The RESET routine is located at $FCE2
in ROM. The decimal address for this location is 64738. To
execute a RESET from BASIC, we enter SYS 64738. Of course we
can also force a RESET through our familiar RESET switch.

PPM I I INTERRUPTS AND RESETS PAGE 50

RESET ROUTINE

FCE2 LOX #$FF
FCE4 SEI PREVENT IRQ INTERRUPTS
FCE5 TXS SET THE STACK POINTER TO TOP - IMPORTANT!
FCE6 CLD CLEAR DECIMAL FLAG TO ENABLE HEX ARITHMETIC
FCE7 JSR $FD02 CHECKS FOR CBM80 AT $8000
FCEA BNE $FCEF SKIP TO $FCEF IF NOT PRESENT
FCEC JMP ($8000) JUMP TO CARTRIDGE COLD START
FCEF STX $0016 SET SCREEN TO 38 COLUMNS
FCF2 JSR $FDA3 INITIALIZE I/O

FCF5 JSR $FD50 *RAM TEST - EXPLAINED BELOW*

FCF8 JSR $FD15 SET HARDWARE & I/O VECTORS {0314-0333}

FCFB JSR $FF5B INITIALIZE VIC CHIP (INCL. COLORS)

FCFE CLI ALLOW IRQ INTERRUPTS AGAIN

FCFF JMP {$AOOO} JMP TO BASIC COLD-START

Let's break down the $FD50 routine (RAM TEST). This is the
routine that initializes the work area and places the $55 at
$8000 ($AOOO normally). The commented code is as follows:

INITIALIZE WORK AREA - RAM TEST

FD50 LOA #$00 THIS SECTION OF CODE WILL CLEAR ZERO

FD52 TAY PAGE, PAGE 2 AND PAGE 3 TO ALL $OO'S

FD53 STA $0002,Y

FD56 STA $0200,Y NOTE THAT THE STACK AT $OlOO-$OlFF IS

FD59 STA $0300,Y NOT RESET {EXCEPT FIRST TWO BYTES}

FD5C INY

FD5D BNE $FD53

FD5F LOX #$3C INITIALIZE CASSETTE BUFFER POINTER

FD61 LOY #$03

FD63 STX $B2

FD65 STY $B3

FD67 TAY THIS SECTION PERFORMS THE RAM TEST

FD68 LOA #$03

FD6A STA $C2

FD6C INC $C2 START TEST AT $0400

FD6E LOA ($Cl), Y $Cl-2 POINTS TO NEXT BYTE TO TEST

FD70 TAX PRESERVE VALUE THERE NOW

FD71 LOA #$55 TEST PATTERN = BINARY 01010101
FD73 STA {$Cl},Y TRY SAVING TO BYTE BEING TESTED
FD75 CMP {$Cl},Y COMPARE VALUE THERE NOW WITH TEST PATTERN
FD77 BNE $FD88 BRANCH IF NOT THE SAME; WE'VE FOUND ROM
FD79 ROL DOUBLE-CHECK WITH $AA = BINARY 10101010
FD7A STA {$Cl},Y

FD7C CMP {$Cl},Y

FD7E BNE $FD88 BRANCH IF ROM FOUND

FD80 TXA

FD81 STA {$Cl},Y RESTORE ORIGINAL VALUE TO BYTE

FD83 INY NEXT BYTE

FD84 BNE $FD6E BRANCH IF NOT DONE WITH PAGE

FD86 BEQ $FD6C NEXT PAGE {256-BYTE AREA}

FD88 TYA GET LOCATION OF FIRST ROM BYTE •••

FD89 TAX

PPMII INTERRUPTS AND RESETS PAGE 51

FD8A LOY $C2
FD8C CLC
FD8D JSR $FE2D •.• AND SET TOP OF RAM POINTER TO IT
FOgO
F092

LOA
STA

#$08
$0282 SET PAGE NO. OF BASIC AREA START

FD95 LOA #$04
FD97 STA $0288 SET PAGE NO. OF SCREEN FOR EDITOR
FD9A RTS ALL DONE

The RAM TEST routine starts at $0400 (screen memory) and works
its way up until it finds ROM (or no longer finds RAM). It
tests a location by storing a test pattern ($55) into it and
then trying to load it back out. If the value it gets back
matches the test pattern, then it must be in RAM (it
double-checks anyway with another pattern, $AA). Since the
routine is not supposed to change RAM, it preserves the value
that was there originally and replaces it afterward. However,
if it stores out the test pattern and can't get it back, then
it assumes it's found ROM. Note that it DOESN'T replace the
original value in this case. The first test value of $55 is
left in memory.

Now we see why we get a $55 at $8000 when EXROM is grounded and
the computer is RESET. EXROM prevents the computer from reading
the RAM at $8000-$9FFF. When the routine stores out the $55 to
location $8000, it does go into RAM, however, wiping out what
was there! Since the routine can't read the $55 back because of
EXROM, it thinks it's found ROM and doesn't replace the
original value. It also records $8000 (32768) as the start of
ROM instead of the normal $AOOO (40960). Since the BASIC BYTES
FREE is calculated by subtracting $0801 (2049) from this value,
we get 30719 instead of 38911.

The next interrupt routine is called the IRQ. Sixty times each
second an IRQ interrupt signal is given to the microprocessor
by the timing hardware. When an IRQ signal is received, the
processor will first check the I flag (IRQ disable flag). If
the I flag is set (by a SEI instruction), the signal will be
ignored. If the I flag is clear, the IRQ will be allowed. Since
an IRQ and a BRK are handled initially by the same same
routine, the processor must first check its BRK flag to tell
which type actually happened. It then selects the proper
routine. The IRQ routine performs several housekeeping chores
such as scanning the keyboard. If a program is in progress,
operation is suspended to allow for the interrupt sequence.
This operation takes place so quickly that we do not notice the
interruption.

PPf4I I INTERRUPTS AND RESETS PAGE 52

IRQ (INTERRUPT REQUEST)	 ROM $FFFE-F (FF48)
RAM $0314-5 (EA31)

1).	 As with the NMI interrupt, the current value of the program
counter will be placed on the stack in high byte/low byte
order.

2).	 The status register (FLAGS) will be pushed to the stack.

3).	 The ROM vector at $FFFE-FFFF is consulted for the actual
entry point of the IRQ routine. This vector points to a
routine located at $FF48 which will then be executed.

FF48 PHA THIS CODE WILL SAVE
FF49 TXA THE REGISTERS
FF4A PHA
FF4B TVA
FF4C PHA
FF4D TSX
FF4E LDA $0104,X GET THE BREAK FLAG FROM THE STACK (BIT 4)
FF51 AND #$10 TEST BRK FLAG - CHECK IF INTERRUPT

code the IRQ routine, would change the

IS FROM A BRK OR AN IRQ
FF53
FF55
FF58

BEQ
JMP
JMP

$FF58
($0316)
($0314)

BRANCH IF IRQ
BRK ROUTINE VECTOR
IRQ ROUTINE VECTOR

Take particular notice of the last two addresses. An
jump based on the contents of $0316-7 will occur if
flag is set. An indirect jump based on the contents of
will be executed if the BRK flag is not set. This
vector points to the ROM routine at $EA31. If you wish

indirect
the BRK

$0314-5
RAM IRQ
to add

some to you vectors at
$0314-$0315 to point to your section of code. At the end of
your code, you should jump to the normal ROM routine at $EA31.
This will insure that the normal housekeeping chores are done
properly. They are as follows:

1).	 Update system clock and check STOP key. The system clock at
$AO-$A2 (BASIC variable TI) is incremented every sixtieths
of a second. Next, the STOP key is checked. If the stop key
is pressed a flag in zero page is set.

2).	 Flash the cursor. Every twentieth time the IRQ routine is
called, the character at the cursor position is reversed.
This causes the cursor to blink 3 times per second.

3).	 Perform tape I/O. Datasette operation is handled through
the IRQ routine. If the datasette is not being controlled
by a program, the motor is switched on or off depending on
whether a key on the datasette is pressed or not.

4).	 Read the keyboard. If a key is pressed, the key code is
determined and the corresponding ASCII value is placed in
the keyboard buffer~

PPMII	 INTERRUPTS AND RESETS PAGE 53

When all these
interrupt with
flag t restores

tasks have been completed t we return from the
RTI. This automatically clears the IRQ disable
the status register and resumes the interrupted

program.

With the above information in ~ind, let's take a look at the
ROM routine at $EA31.

INTERRUPT ROUTINE
EA31 JSR $FFEA INCREMENT TIME CLOCK
EA34 LDA $CC CURSOR BLINK: $OO=OFF t $Ol=ON
EA36 BNE $EA61 IF NOT BLINKING t THEN CONTINUE
EA38 DEC $CD DECREMENT CURSOR BLINK TIMER
EA3A BNE $EA61 IF NOT ZERO t THEN CONTINUE
EA3C LDA #$14 SET CURSOR BLINK TIMER TO 20 JIFFIES
EA3E STA SCD
EA40 LDY $03 GET CURSOR COLUMN
EA42 LSR $CF IF BLINK S~JITCH IS $80 THEN SET CARRY
EA44 LDX $0287 COLOR UNDER THE CURSOR
EA47
EA49

LDA
BCS

($Dl)tY
SEA5C

GET CODE OF CHARACTER UNDER
IF THE BLINK SWITCH WAS ON t

CURSOR
THEN CONTINUE

EA4B INC $CF TURN BLINK SWITCH ON
EA4D STA $CE SAVE CHARACTER UNDER CURSOR
EA4F JSR $EA24 SYNCHRONIZE COLOR POINTER
EA52
EA54

LOA
STA

($F3),Y
$0287

GET COLOR CODE OF CHARACTER
CURRENT COLOR CODE UNDER THE CURSOR

EA57 LOX $0286 BACKGROUND COLOR UNDER CURSOR
EA5A LOA SCE CHARACTER UNDER CURSOR
EA5C EOR #$80 REVERSE CHARACTER VIDEO
EA5E JSR $EA1C SET CHARACTER AND COLOR
EA61 LOA $01
EA63 AND #$10 CHECK FOR THE TAPE DRIVE KEY
EA65
EA67

BEQ
LOY

$EA71
#$00

DETERMINE IF PRESSED

EA69 STY $CO CLEAR TAPE INTERLOCK FLAG
EA6B LOA $01
EA6D ORA #$20 TAPE DRIVE ON
EA6F BNE $EA79
EA71 LDA $CO
EA73 BNE $EA7B TO CHECK KEYBOARD
EA75 LOA $01
EA77 AND #$lF TAPE DRIVE ON
EA79 STA $01 INPUT-OUTPUT REGISTER
EA7B JSR $EAS7 CHECK KEYBOARD
EA7E LDA $DCOD CIA INTERRUPT CONTROL REGISTER
EA81 PLA
EA82 TAY
EA83 PLA RESTORE REGISTERS
EA84 TAX
EAS5 PLA
EA86 RTI RETURN FROM INTERRUPT

PPt·III INTERRUPTS AND RESETS PAGE 54

We've looked at the code and analyzed the routines, but what
does it mean to us? We will explore that question in terms of
how you may utilize the interrupt in your own programming and
in terms of protecting a program.

The key to the interrupt sequence is that it will pass through
a RAM location. This allows the programmer the opportunity to
utilize the interrupt for his own purposes.

let's get to it. load and execute lOMON so that we may
experiment with the IRQ interrupt. Our task will be to add a
border color change to the normal interrupt sequence. Remember,
the interrupt occurs sixty times each second. We will point the
IRQ RAM vector to our routine at $2000.

1). With lOMON activated, type A 1000 SEI followed by RETURN.
This disables the IRQ flag, suspending the operation of the
normal IRQ interrupt sequence so that it will not interfer
with the job we have chosen to perform. All IRQ interrupt
sequences should begin this way.

2). The monitor will respond with the next memory location
(A1001). Type lOA #$00 and press RETURN. We are now loading
the accumulator with the low byte of the location of our
interrupt code.

3) • Again the monitor responds with the
(A1003). Type STA $0314 and press
instruction, we are storing the low
interrupt routine in the low byte of

next memory location
RETURN. Through this
byte address of our
the IRQ RAM VECTOR.

4). We are
is the

now at $1006. Type lDA #$20 and press RETURN.
high byte of the location of our routine.

This

5).	 Type STA $0315 and press RETURN. We will now store the high
address byte of our interrupt routine in the high byte of
the IRQ RAM VECTOR.

6).	 Type ClI followed by RETURN. This instruction will enable
the IRQ flag so that IRQ interrupts may occur. This is not
really necessary since RTI will do this automatically after
an IRQ (only). It's purpose is to remind us that must be
done.

7).	 Type RTI followed by RETURN. This will return us from the
interrupt sequence back to the program in progress.

Disassemble the code at $1000. Check your code with the
disassembly below. Make sure you have programmed the sequence
properly.

PPMII	 INTERRUPTS AND RESETS PAGE 55

PROGRAMING THE IRQ RAM VECTOR

.,1000 78 SEI SET THE INTERRUPT - NO INTERRUPTS
ALLOWED.

.,1001 A9 00 LOA #$00 LOAD THE LOW BYTE OF THE
INTERRUPT SEQUENCE ADDRESS INTO
THE ACCUMULATOR - OUR INTERRUPT
ROUTINE WILL RESIDE AT $2000

.,1003 80 14 03 STA $0314 STORE THE LOW BYTE OF OUR
ADDRESS INTO THE LOW BYTE
IRQ RAM VECTOR

PROGRAM
OF THE

.,1006 A9 20 LOA #$20 LOAD THE HIGH ADDRESS BYTE OF
ROUTINE INTO THE ACCUMULATOR

OUR

.,1008 80 15 03 STA $0315 STORE THE HIGH ADDRESS BYTE
OUR ROUTINE INTO THE HIGH BYTE
THE IRQ RAM VECTOR

OF
OF

. , 1OOB 58 CLI ALLOW IRQ INTERRUPTS TO OCCUR

. , 100C 40 RTI RETURN FROM
THE PROGRAM

INTERRUPT -
IN PROGRESS

BACK TO

We will now store our interrupt sequence at $2000.

1).	 Back to assembly mode. Type A 2000 PHA followed by RETURN.
We will preserve the registers so that a program in
progress may be resumed when we return to normal program
execution. This process must be done through the A
register. The PHA instruction will push the accumulator
onto the stack.

2).	 Type TXA followed by RETURN. We will now transfer the X
register to the accumulator. Remember we can only push
values to the stack through the A register. If we wish to
preserve X, we must first transfer it to the A register.

3). Type PHA and press RETURN. We are now pushing the
transferred X value to the stack.

4).	 Type TYA followed by RETURN. We will now preserve the Y
register. through a transfer to the A register.

5).	 Type PHA followed by RETURN. We will push the transferred Y
value to the stack.

PPtH I	 INTERRUPTS AND RESETS PAGE 56

6) •	 Now that we have preserved our registers, we will go about
the task of adding our color change. Type LOA $0020
followed by RETURN. We are now loading the border color
into the accumulator.

7).	 Type CLC followed by RETURN. This instruction will clear
the carry flag.

8).	 Type AOC #$01 followed by a return. This adds memory to the
accumulator with carry.

9).	 Type STA $0020 followed by a return. The results will be
stored at the border color location.

10).	 With our color change done we must now retrieve the
registers. Type
the stack.

PLA and RETURN pull the accumulator from

11). Type TAY and
register.

RETURN. We will transfer that value to the Y

12). Type PLA and RETURN. Pull
which was the X register.

the next value off the stack,

13). Type TAX and RETURN.
to the X register.

Transfer the value in the accumulator

14).	 Type PLA and RETURN. This is the last value to be pulled
from the stack. It is the value for the A register.

15).	 Type JMP $EA31 and RETURN. This is the ROM routine normally
pointed to by the IRQ RAM vector. This allows normal
housekeeping to be done.

PPM I I	 INTERRUPTS ANO RESETS PAGE 57

Disassemble the code at $2000 and see if your disassembly
matches the one given below.

ADD A BORDER COLOR CHANGE TO THE NORMAL INTERRUPT SEQUENCE

.,2000 48 PHA PUSH THE A REGISTER ON THE STACK

.,20018A TXA TRANSFER THE X REGISTER TO THE
ACCUMULATOR

.,2002 48 PHA PUSH IT TO THE STACK

.,2003 98 TYA TRANSFER THE Y REGISTER TO A

.,2004 48 PHA PUSH IT ON THE STACK

.,2005 AD 20 DO LDA $D020 LOAD THE A REGISTER WITH THE BORDER
ADDRESS

. ,2008 18 CLC CLEAR THE CARRY FLAG

.,2009 69 01 ADC #$01 ADD WITH CARRY

.,200B 8D 20 DO STA $D020 STORE THE RESULT AT BORDER COLOR

.,200E 68 PLA PULL THE A REGISTER OFF THE STACK

.,200F A8 TAY TRANSFER TO THE Y REGISTER

. ,2010 68 PLA PULL THE NEXT VALUE OFF THE STACK

.,2011 AA TAX TRANSFER IT TO THE X REGISTER

.,2012 68 PLA PULL THE NEXT VALUE OFF THE STACK

.,2013 4C 31 EA JMP $EA31 JMP TO THE IRQ ROM ROUTINE

We are now ready to activate our program with G 1000. If you
typed everything in properly, you should now be experiencing an
extremely irritating border color change 60 times a second.
Everything else should be functioning normally. Let1s see.
Using the D command, type D 2000 2013. There's our program. Now
go up to 2005. Go to the end of the line and change the 20 to a
21. This will stop the flashing. Now move to $200B. Go to the
end of the line and again change the 20 to a 21. This should
really drive you up a wall. You'll have to use RUN/STOP-RESTORE
to stop it. Remember, the NMI (RESTORE key) cannot be masked
(disabled) by our SEI, thus we can use it to warm start BASIC
and return us to normal.

Not a very practical program, but through its simplicity we are
able to gain an understanding of the IRQ function.

PPMII l;.TERRUPTS AND RESE.TS PAGE 58

As you can see from our example, the IRQ routine is easily
accessible to the programmer. While this is a joy for the
programmer, it can pose many problems for the lunprotector ' •
The programmer can easily store a 'self-destruct' sequence in
his program to prevent access to the code through normal means.

In the program above, $2005-$200B contains the code to change
the border color. You may also insert code to do whatever you
wish during the interrupt cycle.

Our	 last interrupt is BRK (BREAK).

BRK (BREAK INTERRUPT)	 ROM $FFFE-F ($FF48)
RAM $0316-7 ($FE66)

Recall that when an IRQ or BRK occurs, the microprocessor will
execute the ROM routine at $FF48. Through this routine, it will
determine if BIT 4 of the STATUS REGISTER has been set. This is
the BRK flag. If it is set, the last interrupt was caused by a
BRK and not an IRQ. The following steps will then be taken:

1).	 The microprocessor will increment the program counter (PC)
and store it on the stack (see SPECIAL NOTE below). The
status register will be saved on the stack and the BRK FLAG
set to indicate a BRK has occurred.

2).	 The normal IRQ interrupt sequence will be executed to
determine if the interrupt was caused by an IRQ or a BRK.
This is the ROM routine at $FF48.

3).	 The processor will execute the routine specified by the BRK
vector at $0316-$0317. Under normal circumstances, this
vector points it to $FE66, which is within the NMI routine.
The net effect is to warm-start BASIC exactly as if
RUN/STOP-RESTORE had been used.

The designers of the Commodore 64 chose to route the BRK
routine through a vector in RAM, which may be accessed and
changed by the user. This can be very useful. Many assemblers
and monitors will program the BRK vector to return us to the
monitor. This can make the BRK instruction invaluable in
debugging machine language programs. We may insert a BRK
instruction in our program at some point to verify that
execution has reached this point. When the BRK is encountered,
we will be returned to the monitor. The contents of all
registers will be displayed automatically. We can examine these
to determine if the program is executing properly, and then
resume execution with a G command (but see SPECIAL NOTE below).

PPMII	 INTERRUPTS AND RESETS PAGE 59

Let's do a little experimenting with the BRK RAM vector. With
LOMON loaded and running, look at the code at $0316-$0317, with
M 0316. You should see 3F 80 stored in this location. This is
the address in LOMON we will jump to when a BRK occurs. Let1s
change that vector to point to the RESET routine at $FCE2 with
:0316 E2 FC. Now put a BRK ($00) instruction at $1000 with
:1000 00 or A1000 BRK. Now type G 1000. When the processor
executes the BRK, it consults the vector at $0316-$0317. Since
it finds the address of the RESET routine in this vector, a
software RESET is performed and we see the normal start-up
screen.

SPECIAL NOTE: Even though the BRK instruction is only one byte
long, THE PC IS INCREMENTED BY TWO before being pushed on the
stack in step 1 above. This only happens with BRK and not the
other interrupts. Thus when returning from the interrupt via
RTI, the processor will not resume execution at the next
location directly after the BRK instruction, but rather one
byte past that point. Most monitors compensate for this but it
can cause maddening problems if you are using BRK and RTI
directly in your own routines. TECHNICALLY this is not a bug
since it is spelled out in the documentation (see the
PROGRAMMER1S REFERENCE GUIDE p.238) but it certainly qualifies
as a major quirk of the 6502/6510.

Understanding the three types of interrupts can open new
avenues of programming techniques. Begin by expanding the
programs illustrated here. The possibilities are unlimited.
Give it a try!

PPMII INTERRUPTS AND RESETS PAGE 60

COMPILERS

/40st home computers sold today come equipped with a version of
BASIC (Beginners All-purpose Symbolic Instruction Code). BASIC
is a simple, English-like computer language created by Kemeny
and Kurtz at Dartmouth College in 1965. They designed it
originally to be easy to learn (and teach). It was popular
right from the start and today it is the most common computer
language in the world.

Its simplicity is probably the main reason for its success, but
not the only one. Some credit is also due to the way it is
usually designed to work (implemented). A language like BASIC
can generally be implemented in one of two main ways. The most
common form for BASIC is called an INTERPRETER. The alternative
form is called a COMPILER. To understand the differences
between the two, we need to take a look at the whole idea of a
computer language.

The heart of a computer is the processor, which actually does
all the work. The processor has been compared to someone of
very limited intelligence who nonetheless has a perfect memory
and works VERY fast. When dealing with the processor, you must
stick to commands that it can understand and be careful what
you tell it to do. The old saying is that it always does what
you TELL it, but not necessarily what you WANT!

In the prehistoric days of computing (before 1950), the only
way to change the operation of a computer was to hook and
unhook wires inside it. By connecting the individual
components, called logic gates, in carefully planned ways
computer scientists could produce the output they desired.

They soon realized that the binary number system could be used
to represent the connections to be made. Binary numbers are
made up of only the digits 1 and O. A 1 represents connection
and a 0 means no connection. By converting the planned
connections into binary, a set of numbers can be created to
tell the computer how to switch its own wires, so to speak.

These numbers represent the first LOW-LEVEL computer language,
called MACHINE LANGUAGE. Working with numbers instead of
physical wiring simplified the process of programming
considerably, but it was still far from convenient. It is safe
to say that today no one programs in actual machine language
other than a few instructions here and there. Instead we use
the result of the next stage of development: ASSEMBLY LANGUAGE.

Assembly language is very similar to machine language. It
consists of alphabetic codes called mnemonics which specify the
same operations as machine language, but are easier for humans
to remember. For example, the 6510 processor in the Commodore
64 has an instruction which in binary is 10101001. The
assembler mnemonic for this is simply LDA.

PPMII COMPILER PAGE 61

Before a computer can understand a program written in assembly
language, it is necessary to translate it. At first this was
done by hand, but computer scientists soon found a way to have
this tedious process done by the computer itself.

Thus the first ASSEMBLERS were born. An assembler takes a
program in assembly language, called the source program, and
translates it into a machine language program, called the
object program. Interestingly, the first assemblers were
written directly in machine code, but from then on the simple
assemblers could be used to write better ones!

Hand-in-hand with assemblers go programs called disassemblers.
As the name implies, these can take raw machine code and turn
it into assembly language (mnemonics). They can1t reverse the
process completely without human intervention, though, because
of the problem of telling data from program instructions (does
this 10101001 really stand for LOA or simply hold a data value
for use by some other part of the program?).

A single assembly language instruction usually translates into
a single machine language instruction. Programs written in
either form are usually long and always hard to read. Also,
there are some common tasks that show up in almost every
program, like arithmetic or printing. In the mid-50's computer
scientists began to create the first HIGH-LEVEL languages to
solve some of these problems.

A high-level language consists of much more powerful and
flexible commands than assembly language. For example, the
PRINT command or its equivalent is often the most complicated
command in a language. A single PRINT statement can include
letters, numbers, variables, TABs and other spacing controls
like commas and semicolons. To actually perform the printing as
well as preparing the printer or screen to receive the data
could easily involve executing thousands of machine language
instructions.

Thus a program in BASIC, say, is far shorter and easier to
read, write and modify than the equivalent in assembly
language. Once again, however, it must be converted to a form
that the computer can understand. This is much more complicated
and time-consuming than with assembly language. Not only do you
have to expand the BASIC statements, you also have to keep
track of the program1s data. In assembly language we must
specify where each piece of information is to be kept by giving
the locations directly. In BASIC we use variables and the
system has to keep track of them and reserve enough space.

Although high-level languages and ways of implementing them are
still evolving, we do have a basic (no pun intended) choice of
ways to proceed: a COMPILER or an INTERPRETER. Each has its own
advantages and disadvantages, depending upon the environment in
which it is to be used. An analogy may help to emphasize this.

PPMII COMPILER PAGE 62

Suppose you like Mexican food. Someone recommends a particular
cookbook, so you buy it. When you get home you discover that
it's in Spanish! Furthermore, it uses a lot of complicated
cooking procedures. You know nothing of Spanish, or cooking
either for that matter, but you ARE able to follow simple,
specific directions. just like a computer.

Fortunately. you also have a Spanish-speaking friend who is an
excellent cook. You will represent the processor, the cookbook
is a BASIC program. and your friend is going to be a compiler
or interpreter program.

You give him a copy of the book and ask his help. What would be
the best way to proceed? Probably the most obvious way would
be for your friend to translate the entire book. He could
convert each recipe into English and explain the procedures
used. If there are procedures that are used by more than one
recipe, he might add the detailed explanations on to the end
and refer you to them at the proper time. This corresponds to
COMPILING the cookbook.

Now, this is going to be a lot of work! (hope you're not
hungry). Furthermore, the new version will be a lot longer than
the original because of the explanations. However, it does seem
to be a complete solution. Even though it involves a lot of
time and effort initially, this is more than repaid by the ease
and speed with which you can now follow the English
instructions. Also, you can now give out copies to other
friends who only know English (better check the copyright law
though!)

Also, if there are certain kinds of errors in the original book
your friend can catch them right away. Maybe they have an
obviously wrong amount of chili pepper (!!) or used a procedure
your friend doesn't understand. You wouldn't catch small errors
such as a little too much of one ingredient. though.

Historically, compiling is the approach that was used first in
computing, and is still very common on large computers with
lots of room to spare. There is another way we can use on our
home computer, which has relatively little room available.

To continue the analogy, we aren't going to need all the
recipes at the same time. In fact we might never get around to
using some of them at all. Why should your friend go through so
much work if it's not all necessary?

The alternative is to have your friend hanging on the phone
while you are fixing a meal. As you need some information, he
can look it up on his end and tell you directly. You can then
execute his instructions immediately, so you won't have to
remember them at all. You save a lot of paper and work at the
start. This corresponds to INTERPRETING the cookbook.

PPMII COMPILER PAGE 63

This is going to be slower, though, and you will need to have
your friend and the original book available throughout the
whole process. Since you are a rank amateur, if a procedure is
used in different recipes he will have to explain it each time.
If there is art error, you won't find out until you get into the
middle of the procedure, thus potentially wasting time and
materials.

If you are going to use most of the recipes anyway over a
period of time, or if you use a few very often, you'll end up
taking up far more of your friend's time this way than the
other. If you don't use them extensively, though, the situation
is reversed.

Which way is best? By now you should have some idea why this
has no simple answer. Each method has advantages and
disadvantages relative to the particular situations in which
they will be used. We might also be able to mix the two methods
to some extent.

For instance, your friend could compile the most commonly
prepared recipes and you would only have to call him for the
others as needed. Or he could compile each recipe into a sort
of shorthand and then interpret this for you as needed. These
methods are indeed applicable to computing too.

Now let's look at a programming example to see the difference
in the methods and their pros and cons. Examine the following
BASIC program.

10 A=O

20 IF A(10 THEN 40

30 END

40 A=A+1

50 GOTO 20

A COMPILER processes the entire program in one chunk before any
execution takes place. It checks for syntax errors (typos) as
it goes. If there are any such errors, the program will not be
executed. The compiler will proceed straight through the
program in order by the line numbers, ignoring any GOTOs,
GOSUBs, etc. that might be followed once the program is
executed. Each statement will be examined exactly once.

In processing our sample program, a compiler would simply
examine line 10, then 20, 30, 40 and 50 in that order. Each
would be converted to machine language and stored. Since there
are no syntax errors, when finished converting it would start
the new version executing. The processor would take over from
that point.

An INTERPRETER, on the other hand, processes the program one
statement at a time. If it finds a syntax error in the
statement just processed, it will stop. Otherwise, it will
execute the statement. If that involves a branch, it will

PPMII COMPILER PAGE 64

BLITZ

La

o 2 3 4 5 6 7 8 9 A B c o E F

= = = + - * I AND OR - NOT

add sub neg

FOR NEXT Next CLR POKE GOTO GOSUB ON ON RE· RE·

no var var GOTO GOSUB TURN STORE

SGN INT ABS USR FRE pas SQR RND LOG EXP cos SIN TAN ATN Peek LEN

STR$ VAL ASC CHR$ LEFT RIGHT MID DEF FN SYS PRINT PRINT PRINT PRINT

$ $ $ FN FUNC)

SPC TAB PRINT PRINT SET STOP READ READ WAIT NEW END

#func STR 'Num

THEN INPUT INPUT LOAD SAVE VER·

GOm STR NUM I IFY

OPEN CLOSE

~

o 2 3 4 5 6 7 8 9 A B C o E F

PPMII COMPILERS PAGE 64A

o

HI

2

3

4

5

6

7

8

9

A

B

C

D

E

F

o

2

3

4

5

6

7

8

9

A

B

C

D

E

F

PETS PEED

LO

o 2 3 4 5 6 7 8 9 A B C D E F

o

Str
const

Num Num
Iconst const

LOAD - + ~ / AND OR
sub add

NOT =

NEXT

OPEN CLOSE SGN INT ABS USR FRE POS SQR RND LOG EXP COS SIN

TAN ATN PEEK LEN STR$ VAL ASC CHR$ NEW CLR RUN STEP FOR POKE

PRINT GOTO GOSUB RE- LEFT RIGHT
TURN $ $

WAIT PRINT INPUT Print SYS Print RE·
SPC TAB STORE

)

separ.

o 2 3 4 5 6 7 8 9 A B c D E F

PPM I I COMPILER PAGE 64B

o

HI

2
2

3
3

4
4

5
5

6
 6

7
 7

8
 8

9
 9

A A

B B

C C

D D

E E

F F

follow the branch. The statements skipped over by the branch
will not be processed at this time. If the branch takes it back
to previously processed statements t they will have to be
processed again.

In our examp1e t an interpreter would process line 10 and
execute it, then line 20 and execute it. Since line 20 branches
to line 40, the interpreter will skip over line 30. Line 40
will be processed and executed, then line 50. Since line 50
goes back to 20, the interpreter will have to reprocess line 20
just as if it had never seen it before.

It will then branch to 40 again and have to reprocess itt etc.
Eventually A will equal 10. This time the branch to 40 will not
take placet and it will process line 30 next. This is the only
time line 30 will be processed. Executing it will then end the
program.

Here we see the main difference. The COMPILER will have to
process every 1ine t but only once (in an idealized compiler).
The INTERPRETER will process only those lines it needs to
execute, but it may have to reprocess lines repeatedly.

In comparing the speed of the two methods. it is important to
remember that the compiler's use of time is divided into two
separate parts: First all the compiling. then the executing.
The compiling stage itself generally takes a lot of time but
reduces the execution time to a minimum. Also, compiling only
needs to be done once. The compiled program, including copies
of it. can then be executed any number of times, at high speed.

By contrast, an interpreter goes from processing a statement to
executing it, back to processing, etc. It may well finish
before the compiler is even done compiling. Once done, however t
the compiled program will be able to execute many times faster
than the interpreter. If the program is to be executed more
than a few times. compiling will save time.

What about memory requirements? Since the interpreter operates
one line at a timet it only needs a little extra space. The
compiler, however, has to store the entire compiled program t
which is invariably much larger than the original. This can be
a significant factor for home computers.

As far as syntax errors are concerned t the compiler will find
all of them in the compile stage t whereas the interpreter will
only find those it actually encounters during execution. This
can be very important in a large program. If an error exists.
and you test the program with an interpreter t you might not
happen to test that particular section. You could put the
program into normal use, and then a month or a year later it
suddenly fails because that one situation finally comes up.
Depending on what the program is used fort this could have
serious consequences.

PPMII COMP ILER PAGE 65

This suggests that a program could be developed using an
interpreter for convenience. When it is finished, it could be
compiled and used in that form. There may be times when you
want the program to stay in BASIC though, for example if you
want other people to be able to read it. In this case you can
still use the compiler to check the program for syntax errors.
Most compilers, however, are not able to handle 100% of the
BASIC interpreter commands, so it may signal some good
statements as errors.

Is there some happy medium between the two methods? Yes, in
fact true compilers as outlined above are rare on home
computers. Instead we have a hybrid type called a p-code
compiler. Essentially, a p-code compiler will process the
entire program like a true compiler would, but instead of
producing a machine language object program, it produces what
is called a p-code program.

P-code stands for pseudo-code (it's also sometimes called
speedcode). It is a special shorthand version of the BASIC
program. Since it cannot be executed directly, it must be
interpreted by a special program called the runtime package or
runtime library (RTL). This interpreter operates much the same
as the BASIC interpreter. This may sound more like the worst of
both methods, since we have a compile stage and then have to
interpret too. However, it is a significant improvement for the
following reasons.

First, the p-code object program is somewhat smaller than the
BASIC source program. This is because the compiler removes all
remarks, line numbers, statement separators (:) and spaces
(except those in quotes, of course). In GaTOs and GOSUBs it
uses the actual memory location instead of line numbers. Also,
it keeps a list of all variables used, so that in place of
variable names it can use a variable number. If you count the
runtime package, though, a single small program will become
larger overall. If you have a set of interrelated programs,
however, you need only include the runtime package with the
first program (usually a menu) and from then on just load in
the p-code programs. This can save both disk space and load
time.

Second, and most important, the p-code program can be
interpreted much faster than straight BASIC. In BASIC, when a
GOTO or GOSUB is performed, the interpreter must search through
your program looking for the desired line. On the C64, there
are built-in links to the next statement to help speed this up,
but in a large program it will still take up considerable time.
With p-code, it just jumps directly to the correct location.

The regular BASIC interpreter stores its variables in tables
based on the type and the order they were encountered. When it
needs to find one, it must search through the proper table
trying to match the variable name. The P-code compiler
represents its variables by their position in the table, so

PPMII COMPILER PAGE 66

again the runtime package can go directly to the correct
location. This is especially important in programs with large
arrays.

In BASIC programs, numbers are stored exactly as they appear,
that is, as ASCII digits. Before one can be used it must be
converted to a binary form suitable for calculation. In fact,
this must be done each time the number is encountered.If the
number is encountered repeated1y,as in a loop, this can take a
significant amount of time. In p-code, all this
done only once, at compile time. This speeds
calculations and IF statements as well as loops.

conversion is
up numerical

Finally, a single BASIC statement can be split into several
pieces when compiled, and the pieces rearranged to improve the
speed of execution. Rather than process the statement
sequentially, p-code uses a technique called reverse Polish
notation (RPN). This is not a joke; it's named for a Polish
mathematician whose name is hard to spell. This involves the
use of a stack much the same as the stack in the 6510
processor. Without going into detail, this simplifies the logic
and reduces the time necessary to match up operations and the
data they use. As a result, most statements are stored in
reverse, with the data coming first and the p-code command
1as t .

A further advantage of some p-code compilers is that they
actually add features to BASIC or allow it to use regular
features in new ways. The most popular compilers for the C64
are Petspeed from Oxford Computer Systems and Blitz! from
Skyles Electric Works. Each has its own advantages and
disadvantages. The new features they offer are useful, but
they're not major improvements. You may not want to use them
since they will cause syntax errors when testing your BASIC
source program.

Also, neither of these compilers can handle 100% of Commodore
BASIC. The limitations are different for each one but they are
relatively minor. However, you do have to take them into
account when you write your BASIC source program. Overall,
Blitz! seems to compile faster and have more features and fewer
limitations. Abacus Software has just come out with a compiler
offering both p-code and true compiler options, but we have not
had a chance to evaluate it.

Using a compiler is usually very simple. You just run it and it
asks for the filename of your program. It then analyzes your
program in several passes, while building the p-code version.
It will create some temporary files to help it keep track of
things. Finally it saves out the p-code version along with the
runtime package. The whole process takes anywhere from a few
minutes to half an hour, depending on the compiler and the
length of your sourCe code.

PPMII COMPILER PAGE 67

When pirates look at the compiled code, they see a large,
complex program. They may try to trace the program but since it
goes about its job in a roundabout way, this is going to be a
long process. Chances are they will give up in frustration long
before they get to the protection part of your code.

Let's look at an example of a compiled program. The following
table shows a comparison of a BASIC program and its p-code
equivalent. This particular program was compiled by Blitz!.
Petspeed produces superficially similar code that differs
substantially in the details.

BASIC PROGRAM	 BLITZ! P-CODE (HEX)

(no equivalent)	 15

10 OPEN 15,8,15,"1"	 E9 49 BF B8 BF 60 04

20 OPEN 2,8,2,"'"	 E9 23 B2 B8 B2 60 04

30 PRINT'15, IIU1:2 0 35 01 11	 BF 42 E7 OD 55 31 3A 20 32
20 30 20 33 35 20 30 31 43

40 GET'15, A$	 BF 48 80 46

50 IF A$=1I2 11 THEN 70	 80 E9 32 02 52 1F D5

60 SYS 64738	 A8 90 7C E2 00 00 18 3A

70 CLOSE 2	 B2 61

80 CLOSE 15	 BF 61

90 LOAD "MAIN",8,1	 Bl B8 EC 4D 41 49 4E 5D 03

100 REM THIS is A SAMPLE REMARK	 (no equivalent)

(no equivalent)	 4F

Both the BASIC and Blitz! versions are in~luded on the program
disk if you want to examine them further. I've included the
Petspeed version as well. The BASIC version is called
'UNCOMPILED' and the other two are 'COMPILED.B' (Blitz!) and
'COMPILED.P' (Petspeed).

When you examine the Blitz! version, note that the runtime
package occupies the first 6K of the BASIC area and the p-code
version comes at the end. Actually, the p-code is preceded by
six two-byte pointers at $lF93-$lF9E. These are similar to the
regular BASIC pointers at $2D-$38. They indicate the locations
of the variable tables, DATA statement table, etc. Of
particular interest is the pointer at $lF9D-E, which points to
the start of the p-code program. In this case it is at $lFA1.
The Petspeed version is organized in a similar way except the

PPMII	 COMPILER PAGE 68

pointers come at the beginning of the runtime package and the
package itself is 8k long. The Petspeed p-code starts at $281B.

The example live used might be part of a protection scheme. As
you can see, it checks for an error at track 35, sector 1 (any

partial list of the Blitz! p-codes and their BASIC equivalents.

one will do). If it doesn't find it, it resets the
Otherwise it loads the main program file. This may
realistic scheme but it will serve as an example.

computer.
not be a

At the end of this chapter I have included a table giving a

A Petspeed table is also included. (WARNING: These were derived
by experimenting and may not be totally accurate. This applies
to the following discussion too.) Letls use the Blitzl table
to examine the above p-code program.

First of all, note again that there are no line numbers at the
beginning of p-code lines. The first line of the p-code
contains a $15 byte, which does not correspond to anything in
the BASIC program. This is actually a CLR command which is
inserted automatically at the beginning of the program.

Line 10 (p-code) starts right off with the codes for 'II. This
is the string at the end of the OPEN statement (remember most
statements are stored in reverse). In this case we have what is
called a literal string or string constant, that is, a quoted
string as opposed to a string variable. If less than 8
characters long, string constants are preceded by a extra byte,
which is $E8 plus the length of the string ($E8+1 = $E9). No
quotes are used. Next comes the III itself in ASCII ($49).

Numbers less than 16 are stored as a $BO plus the hex
equivalent. Thus $BF stands for 15 ($OF), $B8 for 8 and then
another $BF. Again, these codes are in reverse of their normal
order. The $60 code stands for OPEN. It is followed by an $04
which indicates that all possible parameters of the OPEN
statement are specified (file no., device no., secondary
address and string). With fewer parameters, this second byte
would be lower.

The next line is similar ($23 is ASCII for 1#1). The following
line starts with $BF 42, which stands for output to file 15
($BF). The next TWO bytes stand for the length of the string to
be printed. In this case, the string is longer than 8
characters so it uses a different format than our previous
examples. The $E7 indicates that the next byte is the actual
string length ($OD = 13). Following this is the string itself.
Finally, $43 stands for PRINT# for strings.

The next line has $BF 48 for input from file 15. The $80 stands
for the variable A$. Non-array variables are represented by an
$80 plus the variable number. The number is based on the order
they were first encountered in the program, starting at number
zero. The $46 represents GET# for strings .

. PPMI I COMPILER PAGE 69

Line 50 checks for the error. First we have $80 for A$, then
$E9 32 for the string 12'. The $02 byte stands for =. The $52
is for THEN when it is followed by a line number (as opposed to
being followed by a statement such as PRINT). The next two
bytes, $lF05, are actually the address to go to (the location
in memory of line 70). Note they are reversed from their normal
10-byte/hi-byte (backwards) order!

The following line contains a $3A for SYS preceded by a binary
form of 64738 ($FCE2). Line 70 has a $B2 (=2) followed by $61
for CLOSE. Line 80 is similar.

Line 90 is similar to lines 10 and 20. First we have $B1 for
secondary address 1, then $B8 for device 8. Next is the length
of the filename ($E8+4 = $EC) followed by the four-byte
filename ($404149 4E = ASCII for IMAIN I). At the end is $50,
which stands for LOAD, and $03 which indicates a LOAD with
three parameters specified.

Notice that there is no p-code corresponding to line 100, since
the compiler removes REM statements completely. Finally, in the
p-code program there is a $4F. This stands for END, which is
added on automatically.

Whew!. This may seem fairly simple once it is explained, but
figuring it out from scratch is another thing. And this was
just a short program! It doesn't have any of the more obscure
situations, such as FOR/NEXT.

It also doesn't have any LET statements, which should be
mentioned. LET is not represented by a separate code; instead
the number of the variable to receive the value is added to
$CO. For example, LET A=l could appear as $B1 CO. The $B1 is
for the number 1. If A is the first variable in the program it
would be number 0, hence $CO.

In summary, let me say that compiling remains a very viable
program protection option for BASIC programs. It is unmatched
in convenience and offers a speed advantage too. It is not
totally unreadable, as we have seen, but requires a lot more
work than machine language to understand. Of course, this is
because of a total lack of documentation. The tables of p-code
equivalents live given required several days of solid work to
produce, as incomplete and possibly inaccurate as they are.
Applying them to a compiled program is not simple, either.

It is certainly possible in theory to create a 'decompi1er l

program which would be able to read p-code and reproduce the
original BASIC source program (aside from variable and FN
names). There have been rumors about them for years, but to
date none have materialized. Here's your chance to make a mark.
If you come up with a more complete p-code table, or even a
decompiler, send it in. If it meets our standards we'll pass it
along to our readers through the newsletter or future volumes
of the Program Protection Manual. Good luck!

PPMII COMPILER PAGE 70

UNDOCUMENTED OPCODES

The Commodore 64 contains aMOS 6510 microprocessor. It is a
slightly revised version of the 6502 processor, which is used
in Commodore's VIC-20 computer and 1540/41 disk drives, as well
as the Apple and Atari computers.

All microprocessors are similar in that they understand only a
limited set of commands. These commands are organized into
groups of related commands which are similar in function but
differ in where the actual data comes from or goes to. Each
group of related commands is called an INSTRUCTION, and the
location of the data is determined by what is called the
addressing mode.

For example, take the LOA instruction. This is the most common
instruction used on the 6510. LOA actually is a mnemonic
(memory aid) which stands for LoaD the Accumulator, also called
the A register. The accumulator is like a variable in BASIC in
that it can hold a value, but in this case the value is limited
to one byte, which means a range of 0 to 255 ($00 to $FF).

Now, the accumulator can load a value from a variety of
sources. Therefore, the LOA instruction has several different
forms. Each form is denoted by a different one-byte operation
code, or OPCODE for short. The particular opcode that is used
tells the processor WHAT to do. It also determines the
addressing mode, which tells the processor HOW to get its data.
Each form usually requires one or two additional bytes of
information which actually specify WHERE the data is contained
(or contain the data itself). This other info is generally
called the OPERAND, and it is usually an address (location in
memory)

Let's look at some examples. One form of LOA has the opcode $A9
(the '$' indicates a number specified in hexadecimal or hex).
This form of LOA specifies what is called immediate addressing,
meaning that the next byte actually contains the value to be
loaded into A, say a $05. Here's how this would look using a
monitor such as HIMON:

HEX CODE MNEMONIC ENGLISH
OPCODE OPERAND OPCODE OPERAND EXPLANATION

A9 05 LOA #$05 Load A with value $05

The 1#1 in the operand's mnemonic is a sign to the assembler to
use immediate addressing, so that it can substitute the correct
opcode form for LOA. Thus the microprocessor knows the
addressing mode by the actual opcode, whereas assemblers (and
us humans) find it easier to use a single mnemonic (LOA) for
the instruction and indicate the address mode separately (#).

PPMII UNDOCUMENTED OPCODES PAG E 71

Actually, the operand is NOT usually the actual value to be
loaded, but rather it is the ADDRESS or location of the value.
Let's look at some other forms of LDA:

HEX CODE MNEMONIC EXPLANATION

OPCODE OPERAND OPCODE OPERAND LoaD A from

AD 34 12 LDA $1234 Location $1234
BD 00 20 LDA $2000,X Location $2000+X
A5 05 LDA $05 Location $05
85 09 LDA $09,X Location $09+X

Note the different hex opcodes for each form. The first form
uses what is called absolute addressing. The data to be loaded
into the accumulator is the one-byte value found at location
$1234. In the hex form, the address is always stored with the
low-order (least significant, $34) byte FIRST and the
high-order (most significant, $12) byte second.

The second form is called absolute, indexed by X. The X
register is similar to the accumulator, and in this case is
used to hold a one-byte INDEX, or offset. The actual address of
the data is calculated by adding the current value of X (say
$07) to the operand ($2000, often called the base address).
Thus the accumulator would be loaded from location $2007.

The other forms are merely zero-page forms of the first two.
This means the high-order byte of the address is assumed to be
$00, so that only a single operand byte is needed, in order to
specify the low-order byte. Thus the address of the data in the
third form would be $0005, and in the fourth it would be $0009
plus the contents of X. The reason there are separate zero-page
forms for LOA is to save memory space and execution time.

There are several other forms of LOA, but these should
illustrate the point that a single INSTRUCTION can be
represented by many different OPCODES. The difference is in the
addressing mode: how the operand bytes will be interpreted
(value or location). If you consult a standard reference book
on the 6510 processor, you will see a total of 56 different
instructions listed (this applies to the 6502 as well). With
the different addressing modes, there are a total of 152
different 'official' (documented) opcodes.

Now, each combination of instruction and address mode is
represented by a separate one-byte opcode. Since a byte can
have 256 different values, this leaves 256 - 152 = 104 'unused'
opcodes. Actually, most or all of these opcodes are useable, so
we prefer to call them 'undocumented' opcodes. Other sources
may call them 'unimplemented', 'undefined' or 'illegal'
opcodes.

PPMII UNDOCUMENTED OPCODES PAGE 72

Whatever you call them, these undocumented opcodes can be very
useful in program protection. No normal monitor or disassembler
will recognize them (they usually appear as 111). Since there
is very little information available about them, a pirate will
have a tough time following your code. You can use them to
shorten a section of code, since they often combine several
regular instructions into a single one. You can also lengthen a
piece of code by 'burying' a couple normal opcodes in a stretch
of undocumented ones.

Let's take a look at some of these new opcodes. Table OP-l
shows the regular 6510 opcode set. Each opcode (byte) is
represented by two hex digits, called nybbles. The row headings
represent the high-order (most significant or left) nybble and
the columns represent the low-order (least significant or
right) nybble. The opcode $A9, for instance, is found where the
tenth row down (SA = 10) and ninth column across meet. Here you
see LOA N.

Notice all the blank spaces in the table. These correspond to
undocumented opcodes. All opcodes ending in 3, 7, B or Fare
open, as are most ending in 2, 4, A or C. This certainly leaves
a lot of possibilities! Some of these opcodes are listed in
table OP-2. The capitalized mnemonics listed in the left margin
are mostly from published material by Joel C. Shepherd.
Following the mnemonic is a brief description of its function,
and below that is a list of the actual hex opcodes and their
corresponding addressing modes.

Take ANDX for example. This stands for store A AND X registers.
First, the values in the A and X registers are AND'ed together
(a standard logic operation). Neither is changed; the result is
placed in the memory location specified by the operand. Let's
use the absolute addressing form, opcode $8F, for our example.
This could be done by regular 'documented' opcodes but it would
take more memory space to store and more processor time to
execute:

Documented opcodes Explanation Undocumented opcodes

8E 00 20 STX $2000 Store X value 8F 00 20 STAX $2000
2D 00 20 AND $2000 A = A AND value
8D 00 20 STA $2000 Store A in $2000

The difference is even greater if you want the regular code to
duplicate the undocumented code exactly. The regular code
changes the accumulator, which the undocumented code doesn't.

Here's another way to use them. The two pieces of code below
perform the same function (if you ignore things like the X
register). In this case, all they do is change the screen and
border colors to black.

PPMII UNDOCUMENTED OPCODES PAGE 73

Documented opcodes
AD 00 08 LDA $0800 Get a 0

Undocumented opcodes
AF 00 08 LDAX $0800

80 20 DO STA $D020 Border 8F 20 DO STAX $0020
8D 21 DO STA $D021 Screen 8F 21 DO STAX $0021
00 BRK Go to 00 BRK

monitor

The easiest way to try this out is to type in the regular code
from a monitor. Then go back and substitute the undocumented
opcode bytes in place of the others (they are the only things
different between the two routines). Execute the code by using
a IG 1 command to the beginning of it. It works!

If a pirate tries to disassemble the undocumented codes using a
monitor, here is what he/she will see:

AF ???
00 BRK
08 PHP
8F ???
20 DO 8F JSR $8FOO
21
00

DO AND
BRK

($DO,X)

Quite a difference!

Upon seeing this most pirates would assume they made a mistake
in tracing your program flow, and go back over the code up to
that point. Even if they knew about the undocumented codes,
many will not want to spend the time and effort to decode a
sizeable piece of it. Your main weapons against pirates here
are to confuse them and make them work for their ill-gotten
gains.

Note that some of the undocumented opcodes are not covered in
the second table. These you may want to investigate further
yourself. There are a couple of approaches that may be helpful.

One way is to simply try executing the unknown operation. Start
by storing the opcode in memory followed by one or two bytes
(or possibly none) for the operand. After this you should place
a documented instruction to return control to you after
execution (like BRK). To test, load the registers and the
location you think will be used as the operand with some sample
values. If you are using a monitor like HIMON, it is easy to
load values into the registers. Use the 'R' command tq display
the registers, then type your values over the displayed ones
and hit RETURN. Finally, execute the instruction. By examining
the registers and memory location afterward, you may be able to
work out what happened.

PPMII UNDOCUMENTED OPCOOES PAGE 74

TABLE OP-1A DOCUMENTED

LO

o 2 3 4 5 6 7 8 9 A B C D E F

o

2

3

4
HI

5

6

7

8

9

A

B

C

D

E

F

BRK ORA
(Z, Xl

BPL ORA
(Z), Y

JSR AND
(Z, X)

BMI AND
(Z), Y

RTI EOR
(Z, X)

BVC EOR
(Z), Y

RTS ADC
(Z, X)

BVS ADC
(Z), Y

STA
(Z, Xl

BCC STA
(Z), Y

LOY

LDA
(Z, Xl

LDX

BCS LDA
(Z), Y

CPY

CMP
(Z, Xl

BNE CMP
(Z), Y

CPX

SBC
(Z, Xl

BEQ SBC
(Z), Y

BIT

Z

STY

Z

STY

Z, X

LDY

Z

LDY

Z, X

CPY

Z

CPX

I Z

ORA ASL PHP ORA ASL ORA ASL I
Z Z # A M M

ORA ASL CLC ORA ORA ASL
Z, X Z, X M,Y M,X M,X

AND ROL PLP AND ROL BIT AND ROL
Z Z # A M M M

AND ROL SEC AND AND ROL
Z, X loX M,Y M,X M,X

EOA LSA PHA EOA LSR JMP EOA LSR
Z Z # A M M M

EOR LSR Cli EOR EOR LSR
Z, X Z, X M, Y M, X M,X

ADC ROA PLA ADC ROA JMP ADC ROA
Z Z # A (Ml M M

ADC ROA SEI ADC ADC AOA
Z, X Z, X M, Y M,X M,X

STA STX DEY TXA STY STA STX
Z Z M M M

STA STX TYA STA TXS STA
Z, X Z, Y M, Y M,X

LDA LDX TAY LDA TAX LDY LOA LDX
Z Z # M M M

LOA LDX CLV LDA TSX LDY LDA LDX
Z, X Z, Y M, Y M,X M,X M, Y

CMP DEC INY CMP DEX CPY CMP DEC
Z Z # M M M

CMP DEC CLD CMP CMP DEC
Z, X Z, X M,Y M,X M,X

SBC INC INX SBC NOP CPX SBC INC
Z Z # M M M

SBC INC SED SBC SBC INC
Z, X Z, X M, Y M,X M,X

o

2

3

4

5

6

7

8

9

A

B

C

D

E

F

o 2 3 4 5 6 7 8 9 A B C D E F

PPMII UNDOCUMENTED OPCODES PAGE 74A

TABLE OP-1B· DOCUMENTED AND UNDOCUMENTED

LO

o 2 3 4 5 6 7 8 9 A B C D E F

oo

HI

2
 2

3
3

4
 4

5
 5

6
 6

7
7

8
 8

9
 9

AA

B B

C C

D o

E E

F F

BRK ORA ORA ASL SLOR PHP ORA ASL ORA ASL SLOR
(Z, Xl Z Z Z /I A M M M

BPL ORA BIT ORA ASL SLOR CLC ORA ORA ASl SlOR
(Z), Y Z Z,X Z,X Z, X M, Y M,X M,X M,X

JSR AND AND ROL RLAN PLP AND ROL BIT AND ROL RLAN
(Z, Xl Z Z M /I A M M M M

8MI AND AND ROL RLAN SEC AND AND ROL RLAN
(Z), Y Z,X Z,X Z, X M, Y M, X M,X M,X

RTI EOR EOR LSR SREO PHA EOR LSR JMP EOR LSR SREO
(Z, Xl Z Z Z /I A M M M M

BVC EOR EOR LSR SREO CLI EOR EOR LSR SREO
(Z), Y Z,X Z,X Z,X M, Y M,X M,X M,X

RTS ADC ADC ROR RRAD PLA ADC ROR JMP ADC ROR RRAD
(Z, Xl Z Z Z /I A (M) M M M

BVS ADC ADC ROR RRAD SEI ADC ADC ROR ARAD
(Z), Y Z,X Z,X Z,X M, Y M,X M, X M,X

STA STY STA S1)(ANDX DEY TXA ANAX STY STA S1)(ANOX
(Z, Xl Z Z Z Z /I M M M M

SCC STA STY STA S1)(ANOX TYA STA 1)(S STA TSTA TSTX
(Z), Y Z, X Z,X Z, Y Z, Y M, Y M,X M M

LDY LDA LDX LDY LDA LDX LDAX TAY lDA TAX LDAX LDY LDA LDX LDAX
/I (Z, Xl /I Z Z Z Z /I /I M M M M

SCS LDA LDY LOA LDX LOAX ClV lDA TSX ANSP LDY LOA lOX LDAX
(Zl, Y Z, X Z, X z, Y Z, Y M, Y M, Y M,X M, X M, Y M, Y

CPY CMP CPY CMP DEC DCMP INY CMP DEX SUBX CPY CMP DEC DCMP
(Z, Xl z z Z Z /I /I M M M M

BNE CMP CMP DEC DCMP CLD CMP CMP DEC OCMP
(Z), Y Z, X Z,X z, X M, Y M,X M,X M,X

CPX SBC CPX SBC INC ISBC INX SBC NOP CPX SSC INC ISBC
/I (Z, Xl Z z Z M /I M M M M

SEQ SBC SBC INC ISBC SED SSC SBC INC ISBC
(Z), Y Z, X z, X M,X M,Y M,X M,X M,X

o 2 3 4 5 6 7 8 9 A B C o E F

PP~lI I UNDOCUMENTED OPCODES PAGE 746

As an example, 1et 1 s test opcode $87. First, load in one of the
monitors on the program disk. Using the ': I memory modify
command, enter the test bytes at location $1000. Use the Go
command 'G 1 to start execution.

:1000 87 FB 00 00

G 1000

Suppose $87 requires only one byte for its operand (data)
address. The next byte after the $87 is $FB, so this is the
address it will use ($FB is an unused location in zero-page).
Since the following byte is $00, it will then perform a BRK,
which returns us to the monitor.

Now suppose, on the other hand, $87 requires two operand bytes.
In this case the bytes it will use are $FB 00, forming the
address $OOFB (remember the bytes are in reverse order). This
actually specifies the same zero-page location as before. The
next byte after $FB 00 is another $00, so the next instruction
executed would be BRK again.

So either way, weill be sure to get back to the monitor. How do
we tell which of the two possibilities above actually
happpened? When you re-enter the monitor, it will display the
contents of all the registers, including the program counter
(PC). The PC tells you the address of the last instruction
executed (which $00 byte caused the BRK). From this we can
usually determine how many bytes the instruction required.

In the example above, we get a PC value of $1002. Thus it was
the $00 at $1002 that caused the BRK. This means that $87
requires only one operand byte (the $FB). If you check table
OP-2, you'll see that $87 is ANDX with zero-page addressing,
which simply means it uses only one operand byte. This confirms
our experimental result.

In short, you can find the total number of bytes an instruction
used (including the opcode itself) by simply subtracting the
location of the instruction ($1000) from the PC value after the
instruction executes ($1002). Some monitors, such as HESMON,
return a PC value of $1003 in the test above. This simply means
you have to subtract 1 from your answer. There's no problem as
long as you know which way your monitor works.

You'll find that some of these codes will lock-up your
computer. This is not dangerous, just frustrating. Unlike all
those science fiction movies you've seen, you can't damage your
computer by typing in the wrong command (the disk drive is
another matter - see the editorial on bad blocks). This lock-up
can happen if the opcode you're testing performs a branch or
jump.

PPMII UNDOCUMENTED OPCODES PAGE 75

On the 6510 processor, a branch instruction can go up to 127
bytes forward or 128 bytes backwards only. As long as you
surround your instruction with this many $00 (BRK) bytes, a
branch is sure to hit one and thus return you to the monitor. A
jump (JMP) or jump subroutine (JSR), however, can end up
anywhere in memory. To prevent lock-up, fill as much of memory
as possible with $00, and watch out what you use for your test
operand. Still, you may have to use your reset switch to
recover in some cases.

As you might guess, the trial and error method can be very
time-consuming. Another approach is to examine table oP-l for
patterns among the regular instructions and then apply the
patterns to the undocumented codes.

For instance, the regular opcode $05 is ORA with zero-page
address (single operand byte), and regular opcode $06 is ASL
with zero-page. From this you might guess that the undocumented
code $07 also uses zero-page addressing. Likewise, since $15
and $16 are the X-indexed versions of $05 and $06,
respectively, you might conclude that $17 could be an X-indexed
version of $07. A glance at table OP-2 confirms these guesses.

You might also notice that the regular opcode $OE is the
absolute (two-byte operand) form of $06. Since $OE = $06 + $08,
you might guess that the undocumented opcode $OF is the
absolute form of $07 ($OF = $07 + $08). Also, $lE is the
X-indexed form of $OE, so $lF could be the X-indexed form of
$OF. These observations also turn out to be true.

In fact, the undocumented ope ode $07 is actually a combination
of the regular opcodes $05 and $06. We called it SLOR because
it first performs an ASL and then an ORA. Most of the codes in
columns 7 and F work this way, subject to the following general
rules:

1).	 If possible, the two functions are executed simultaneously.
Otherwise, the one with the higher opcode is executed
first. This explains why $07 (SLOR) first performs a $06
(ASL) and then an $05 (ORA).

2).	 If two values are to be stored into the same location (not
normally possible) the values will be AND'ed together
first. For example, this accounts for the operation of
ANOX, which first AND's the A and X registers together and
then stores the result in memory.

3).	 If the two functions it performs use different indexes,
i.e. one is indexed by X and the other by Y, then the new
opcode will use V-indexing. For example, ope ode $B5 is LOA
zero-page with X-indexing and $B6 is LOX zero-page with
V-indexing. Undocumented opcode $B7 loads both A and X from
zero-page, with V-indexing.

PPMII	 UNDOCUMENTED OPCODES PAGE 76

The patterns do not always hold true (see code $9F for
example), but they can give you some idea of what to look for
when experimenting. Of course, you will have to use the trial
and error method outlined above to confirm your guesses.

A third approach is to study the internal design of the
microprocessor to predict how it will handle the undocumented
opcodes. It must use a fairly simple system to decide which
functions to perform, based on looking at the bits of the
opcode. This is called instruction decoding and is what you are
trying to estimate from analyzing the patterns in the table.

Unfortunately, the required information is very hard to obtain.
It may well be proprietary (trade secret) and thus not
available to the public. It would, however, settle the question
once and for all - unless they redesign the processor!

This is not as unlikely as it sounds, and brings up some of the
disadvantage of these opcodes. Since there· is so little
information available, you should experiment with an opcode to
confirm its function, even for those we've included in our
tables. To enter undocumented opcodes into a program you will
have to look up the opcode and store the hex value into memory
with a monitor one instruction at a time. This can be very
tedious. An alternative would be to modify a standard assembler
or monitor to handle them, perhaps one written in BASIC.

Finally, and most important, 'Commodore Semiconductor Group
cannot assume liability for the use of undefined opcodes'. This
means that if the manufacturer redesigns the processor (to
correct bugs or reduce power use or size) there is no guarantee
that the unofficial opcodes will still function the same.

In fact, the 6502 processor upon which the 6510 is based has
had several revisions. The unofficial codes in this chapter
will work on some 6502's and not others, especially ones from
different manufacturers. We Commodore 64 owners have been lucky
so far; there are no reported differences between the 6510
processors in use. This is probably due to the fact that they
are manufactured by MOS Technologies, which is owned by
Commodore.

Undocumented opcodes have not been used in many commercial
programs so far, although there have been some. In conclusion,
they offer excellent, if largely untapped, program protection
potential.

PPMII UNDOCUMENTED OPCODES PAGE 77

Table OP-2: UNDOCUMENTED OPCODES
I
j	 .

ANDX - Take~ the accumulator and X-register. ANDis them
together and stores the result in memory. The
accumulator and X-register are not changed.

MODES:	 87 Zero page
97 Zero page. indexed by the V-register
8F Absolute

ANXM - Takes the accumulator, X-register and operand byte,
ANDis them together and stores the result in the
accumulator. The X-register is not changed.

MODES:	 88 Immediate

AXSP - Takes the contents of the memory location. indexed by
the V-register, AND's it with the stack pointer, and
stores the result in the stack pointer. accumulator
and X-register. The memory location is not changed.

MODES:	 S8 Absolute

DCMP - Decrements the memory location, subtracts the new
contents of the memory location from the accumulator
and puts the result in the accumulator.

MODES:	 C7 Zero page
07 Zero page, indexed by the X-register
CF Absolute
DF Absolute, indexed by the X-register

ISBC - Increments the memory location, subtracts the new
contents of the memory location and the carry flag
from the accumulator, and places the result in the
accumulator and carry flag.

MODES:	 E7 Zero page
F7 Zero page, indexed by the X-register
EF Absolute
FF Absolute, indexed by the X-register

LDAX - Loads the accumulator and X-register from the memory
location. The memory location is not changed.

MODES:	 A7 Zero page
B7 Zero page, indexed by the V-register
AF Absolute
SF Absolute, indexed by the V-register
AB Immediate

RLAN - Rotates the bits of the memory location left, ANDis
the new contents of the memory location with the
accumulator and places the result in the accumulator.

t~ODES:	 27 Zero page
37 Zero page, indexed by the X-register
2F Absolute
3F Absolute, indexed by the X-register

PPMII	 TABLE OP-2 PAGE 77A

RRAD - Rotates the bits of the memory location right, adds
the new contents of the memory location and carry flag
to the accumulator, and places the result in the
accumulator and carry flag.

MODES: 67
77
6F
7F

Zero page
Zero page, indexed by the X-register
Absolute
Absolute, indexed by the X-register

SLOR - Shifts the memory location left, ORis the new contents
of the memory location with the accumulator, and
places the result in the accumulator.

MODES: 07
17
OF
1F

Zero page
Zero page, indexed by the X-register
Absolute
Absolute, indexed by the X-register

SREO - Shifts the memory location right, EXCLUSIVE-OR's the
new contents of the memory location with the
accumulator, and places the result in the accumulator.

MODES: 47
57
4F
5F

Zero page
Zero page, indexed by the X-register
Absolute
Absolute, indexed by the X-register

SUBX - Subtracts the value given
places the result back in

from the X-register
the X-register.

and

MODES: CB Immediate

TSTA - ANDis the accumulator with the value $04 and places
the result in the memory location. The accumulator
not changed.

is

MODES: 9F Absolute

TSTX - ANDis the
result in
changed.

X-register with the value
the memory location. The

$04 and places the
X-register is not

MODES: 9E Absolute

Note: Addressing mode definitions

Absolute - A two-byte ADDRESS given in standard
lo-byte, hi-byte (reverse) order. Address $1234 would
be specified as $34 12.

Zero page - A one-byte ADDRESS, with the hi-byte
assumed to be $00. Address $0012 would be specified
as $12.

Immediate - A one-byte
memory location.

VALUE specified directly; not a

PPMII TABLE OP-2 PAGE 77B

ENCRYPTION

ENCRYPTION is a hot topic today, not only in program protection
but also in a lot of other applications. Everyone from the
federal government on down through businesses (including bookie
joints!) to game programmers seems to be interested in new ways
to scramble information so it canlt be read - until the right
time. As much time as is spent on creating new encryption
methods, certainly a far greater amount is spent trying to
break these lcodes l .

What is encryption? In answering that question most people
would use the word lcode l somewhere along the line. The concept
of encryption does include the idea of codes but can go far
beyond them into some very advanced mathematics. Fortunately
for all of us, these methods are beyond the scope of this
manual, as well as most program protection schemes!

Strictly speaking, a code is a direct substitution of one unit
of information for another according to a set rule. These units
of information can be letters, words, digits, whole numbers,
even sounds or lights. Often, one type of information is
substituted for another. The rule used for encoding can be very
simple or very complex. For every encoding rule there is also a
corresponding decoding rule which reverses the original
substitution.

1

Encrypting includes straight encoding but is a more general
process. Encryption includes other methods too, including some
whereby the information is expanded as it is encrypted, either
by a mathematical method or simply by embedding it within a
larger body of information. Of course, all encryption methods
have corresponding decryption methods. Although this chapter
will involve techniques that are actually encoding methods,

1 11 use the general term encryption.

The history of encryption is a long story whose beginning is
lost. Archaeologists have traced it back at least as far as
ancient Babylonia. Clay tokens were used by merchants to label
sealed jars of merchandise for shipment. Robbers would not be
able to tell which jars contained valuables, yet the receivers
could inventory them without opening perishable goods.

Eventually the tokens' meanings became well known, and they
began to be used in everyday communication. Rather than make
the tokens themselves, people used them to make impressions in
clay tablets. This was the beginning of written language. Not
only is this the earliest known example of encryption, but also
the earliest case of breaking such a scheme! Imagine that,
piracy goes all the way back to 3500 B.C.!

PPMII ENCRYPTION PAGE 78

The Egyptians, Greeks and Romans all had military encryption
schemes. In building their pyramids, the pharoahs took
elaborate precautions to disguise the entrances and
passageways, yet they left clues so that the gods could enter.
This gives a whole new meaning to the word 'encrypt'. The
Pythagorean Society of ancient Greece used a complex code
involving musical notes and mathematics. Leonardo Da Vinci
wrote all of his notes backwards, so that they had to be read
with a mirror. Other examples from history ~re common.

The United States has used encryption in war and peacetime as
well. Let's not forget Paul Revere, who arranged for a comrade
to signal 'One if by land, two if by sea'. In World War II,
Navaho Indians were used as encrypters. Their language is
different from any other, and no dictionary had ever been
compiled. A message in their language could only be understood
by another Navaho.

Today we have the National Security Agency, which uses the
world's most powerful computers to intercept and decrypt
telephone, telex and other communications. They have even been
involved in commercial encryption. The National Bureau of
Standards and IBM recently collaborated in the creation of a
standard encryption method called DES (Data Encryption
Standard). Originally it called for a 64-bit 'key'
(mathematical basis) chosen by the user. The NSA persuaded them
to reduce it to 60 bits, presumably so they could break it more
easily. Some people believe that the NSA was involved in the
design of the scheme right from the start, working through IBM,
and that it has a so-called 'trapdoor' built into it so the NSA
can break at will.

Perhaps the most secure encryption scheme ever invented is the
one called RSA, after the initials of its inventors. Without
going into detail, it involves taking huge numbers (200 digits)
to different powers based on the message to be sent. Breaking
it would be equivalent to solving one of the oldest problems in
mathematics, that of determining all the factors of a number
(other numbers that can be divided evenly into the original
number) in a reasonable amount of time. It is estimated that
with a 200-digit key, it would take the largest computers (like
the NSA' s) billions of years to crack this code by trying all
the possibilities. The NSA tried to have publication of the
method halted for national security reasons, but they were not
successful.

Unfortunately, this method requires a lot of computer time to
encrypt or decrypt a message, so it is not practical for our
purposes. It does illustrate the point that the sky's the limit
on how hard a method can be to crack. Realistically, we do not
need anything this complex to protect programs. Most of the
methods used today are qUite simple. They rank about as hard as
that Dick Tracy Secret Code you used as a child, and yet they
manage to confound most people.

PPMII ENCRYPTION PAGE 79

A really good method would require a considerable amount of
design time on the part of the programmer and also a lot of
time to decrypt as the program is being loaded. Probably the
real reason we have not seen many high-caliber encryption
schemes is that such a scheme is only as secure as the machine
it is loaded into. That is, lifting a program from memory once
it is loaded and decrypted is generally a lot simpler than
cracking the encryption scheme from scratch. The main value of
encryption is to prevent direct modification of the program on
disk and to add a certain amount of overall difficulty to
breaking it.

With that in mind, let's look at a very common encryption
routine. This one uses the exclusive-OR (EOR) instruction of
the 6510 processor. Before we examine the scheme itself, we
need to review the characteristics of the EOR function. While
we're at it we'll look at two other logic instructions, namely
AND and ORA. These three functions are found on almost all
processors. In fact, these functions were discovered by
mathematicians long before computers were invented.

The following table summarizes EOR, AND and OR:

TABLE EN-l

EOR I 0

o I 0

1 o

A~NO O~

000 o I 0

o 1 1 I 1 I 1

In each case, the function takes two binary digits (bits) as
input data and gives another bit as the result. The row and
column headings are used to select the inputs, and the result
is found in the square where the row and column meet. For
instance, performing EOR with a 1 as one input and a 0 as the
other input yields the result 1.

Notice that it does not matter which order the inputs are in.
Doing a 0 EOR 1 gives the same result as 1 EOR 0, namely 1.
This is true for all three functions. The result of 1 AND 0
equals 0 AND 1 (both equal 0) and lORA 0 equals 0 ORA 1 (both
equal 1). Check for yourself that these are the results
predicted by the table.

Actually, the EOR, AND and ORA instructions on the. 6510 each
take two whole BYTES as input. They perform their function on
pairs of corresponding BITS from each input BYTE. The answer is
a single byte made up of the individual result bits. Each pair
of bits is done independently, so these bit-pair results are
all we need to determine the byte result in any situation.

You may be wondering how the results in table EN-l were
derived, or hoping there is some easier way to remember them
besides memorization. Rest assured, they represent very simple

PPMII ENCRYPTION PAGE 80

ideas. As their names imply, AND and ORA are related to the
English words land l and lorl. EOR is a relative of ORA, and the
idea it represents is sometimes expressed in English using 'or l
also. There are a number of ways to remember them; 1 1 11 give
you a couple.

One way is to give a general rule that tells, based on the
inputs, when the function yields a result of 1. For AND, the
result is 1 only when BOTH inputs are 1; otherwise it is O. You
can see this from the table. The ORA function gives a 1 result
when ANY of the inputs is 1; it gives a 0 only when both are O.
AND and ORA are called dual functions since if you replace all
the lis in the AND table with OIS and replace all the OIS with
lIs (including the row and column headers) you wfll get the
table for ORA.

As for EOR, the rule is that it gives a 1 when EXACTLY ONE of
the inputs is a 1; that is, when EITHER input is a 1 but NOT
BOTH. It's called lexclusive-or l because its rule for producing
a 1 lexcludes l the case where both inputs are 1. It is closely
related to ORA, as you can see. They differ only in the case of
two 1 inputs. Regular ORA is sometimes called linclusive-or l
(lOR) since its rule for producing 1 linc1udes l the case where
both inputs are 1.

Another way to remember them is to ask yourself a particular
question. If the answer is YES, then the function yields a 1.
If the answer is NO then the function gives a O. For AND, ask
yourself IAre BOTH inputs 1? I. For ORA, ask 'Is ANY input a l?
I. For EOR, perhaps surprisingly, you can ask yourself IAre the
inputs DIFfERENT ?I.

One thing you should not rely on is the use of these words in
English, since they arenlt used consistently. Much if not most
of the time when we use lor l we really m~an lexc1usive-or l • For
instance, if you tell your kids IC1ean up your room OR 1 1 11
punish you' you mean either one or the other will happen, but
surely not both!

When you make a statement where you mean that either or both
things could .be true, you are using the regular ORA, as in 'My
disk drive is out of alignment OR this disk is screwed Upl.
Maybe both! We can make this distinction clearer by using
leither/or l for EOR and land/or l for ORA. Thus

l
we could say

IEITHER you clean your room OR 1 1 11 punish you and 'My disk
drive is out of alignment AND/OR this disk is screwed Upl.
There are also some occasions where we use land l where we mean
lori, but they ~re less common.

To reinforce your understanding of these functions, let's look
at a few examples involving whole bytes. Below I have given the
result when the same two sample bytes are AND led, ORAled and
EORled. The two bytes were chosen so that every possible
combination of bits is illustrated (twice in fact). To
distinguish the original bytes let's call the top one the INPUT

PPMII ENCRYPTION PAGE 81

and the bottom one the VALUE (but remember that you'll get the
same result regardless of which one is which). For reference
the hex equivalent for each byte is given and the corresponding
6S10 code is shown.

BINARY HEX BINARY HEX BINARY HEX
0011 1010 $3A 0011 1010 $3A 0011 1010 $3A

EOR 01011100 SSC AND 0101 1100 $SC ORA 0101 1100 $SC
0110 0110 $66 0001 1000 $18 0111 1110 $7E

A9 3A LDA #$3A A9 3A LDA #$3A A9 3A LDA #$3A
49 5C EOR #$5C 29 5C AND #$SC 09 SC ORA #$SC

Note again that each pair of bits (top and bottom) is operated
on independently to give the result bit. Be sure to verify each
result using table EN-l to help complete your understanding.

There is an interesting phenomenon which we can illustrate with
our examples. If we take the result of the EOR function and EOR
it again with the value byte, we will get the input byte back!

BINARY HEX BINARY HEX
0011 1010 $3A Input 0110 0110 $66 Result

EOR 0101 1100 $SC Value EOR 0101 1100 SSC Value-
0110 0110 $66 Result 0011 1010 $3A Input

A9 3A LDA #$3A Input A9 66 LDA #$66 Result
49 SC EOR #$SC Value 49 SC EOR #$SC Value

We call EOR a reversible function because of this. Actually, we
can EOR the result with either original byte, value or input.
No information is lost in the EOR process; if we know the
result and one of the bytes we can always recover the other
one. This is a handy feature to exploit in an encryption scheme
since we can use the same routine to both encrypt and decrypt!
Weill see an example of this soon.

If we try this with AND or ORA, we won't be able to reverse
them.

BINARY HEX BINARY HEX

AND
0011
01 01

1010
11 00

$3A
$SC

Input
Value AND

0001
0101

1000
1100

$18
$SC

Result
Value

0001 1000 $18 Result 0001 1000 $18 Same

49 3A LDA #$3A Input 49 18 LDA #$18 Result
29 5C AND #$SC Value 29 SC AND #$SC Value

PPMII ENCRYPTION PAGE 82

BINARY HEX BINARY HEX

ORA
0011
0101

1010
1100

$3A
$5C

Input
Value ORA

0111
0101

1110
1100

$7E
$5C

Result
Value

0111 1110 $TC Result -0111 1110 $'7£" Same

49 3A LOA #$3A Input 49 7E LOA #$7E Result
09 5C ORA #$5C Value 09 5C ORA #$5C Value

Note that, in fact, in all cases the result stayed the same.
The original bytes have contributed all they can and can't
alter the result any more. So we can't reverse these functions
by repeating them with one of the original bytes. Can we
reverse them some other way? Unfortunately not, since
information has actually been lost in this process. Looking
back at table EN-l we can see why this is true.

Suppose we know that the original value bit of an ANO operation
was a 0 (top row of the AND table). If the result bit was a 0,
we can't tell if the input bit was a 0 or a 1, since both would
have given a 0 (it's the only possible result). If we know the
original value was a 1 (second row of the table), then we CAN
tell what the input was: If the result is 0, the input was 0;
if the result is 1, the input was 1. This suggests that we
always make sure to AND with a value of 1 so as to be able to
get back the input. Unfortunately, AND'ing with 1 doesn't
change the input at all!

The exact same thing happens with ORA, except for reversing the
roles of a and 1 (since they're dual functions as defined
above). The only way to be sure you can recover an input is to
have originally ORA'ed it with 0, but this does not change the
input. Not much of an encryption scheme!

With the preliminaries out of the way, let's look at the role
of EOR in encryption. One particular value is worth mentioning
for use with EaR. If you look back to table EN-l, you will see
that if the value bit is 1, the result bit will be the opposite
of the input bit. For whole bytes, this means that if we use a
value of $FF (binary 1111 1111) the result byte will equal the
input byte with all the bits 'flipped', that is, all a's will
be replaced with 1 's and vice versa. This is a fairly common
value to see in program protection methods.

We'll use this value in our first encryption routine. The
following routine takes one page (256-byte chunk) of memory at
the beginning of the BASIC area, EOR's it with the value $FF,
and puts it back in the same place, byte by byte. It's called
'ENCRYPT BASIC' on the program disk.

PPMII ENCRYPTION PAGE 83

1000 AO 00 LDY #$00 Start with offset of zero
1002 B9 0108 LDA $0801, Y Load A from 10c. $0801+offset
1005 49 FF EOR #$FF Exclusive-or A with value $FF
1007 99
100A C8

01 08 STA
INY

$0801,Y Put encrypted byte
Increase offset

back

100B DO F5 BNE $1002 Branch if more to do
100D 60 RTS Finished; return to BASIC

A few words of explanation are in order. The routine uses
indexed addressing to load and save the accumulator. This form
of addressing uses the Y register as an offset from the address
specified in the LOA instruction. Thus the actual address to be
loaded from or saved to is the sum of the address given ($0801)
and the value of the index (Y). As we increase the index (INY)
we step through memory one byte at a time. After Y reaches $FF
(255), it will reset to zero when incremented again. As long as
Y hasn't been reset to zero the branch instruction (BNE) will
continue the processing. Eventually Y will be reset to zero;
this time the branch is not taken and we fall through to the
RTS, which returns us back to BASIC.

This takes care of how the looping is set up. The actual work
of encrypting is done by the EOR instruction at location 1005.
This instruction EOR's the contents of the ACCUMULATOR (A)
directly with the value specified ($FF). This is called
immediate addressing and is specified by a 1#1 before the
value. The result is placed back in the accumulator.

To try this routine out, first load it from the program disk
with LOAD IENCRYPT BASIC',8,l (don't do this from a monitor).
Next you need to load a BASIC program to try it out on. Therels
one on the disk for just this purpose: LOAD 'BASIC SAMPLE I ,8.
List it to see what it looks like normally. To encrypt it,
execute the routine with a SYS 4096 (= $1000) from BASIC.

Now try to list it again. Your nice BASIC program is a mess!
All is not lost, though; because we used EOR the program is
easily recovered by running the same routine over it again. Try
it! Do another SYS 4096 and list again. Voila!

You can go back and forth from encrypted to decrypted form as
many times as you wish. You can even save the encrypted version
with a regular BASIC save. However, loading it back in from
BASIC presents a bit of a problem. BASIC attempts to re-1ink
the statement line pointers when it finishes the load (see PPM
Vol. 1 for a discussion of BASIC line pointers). In almost all
cases this will mess up the encrypted program.

The solution is to load the program back in from machine
language. You can kill two birds with one stone by putting the
loading and decryption routines into an autoboot program. You
will also have to set the BASIC variable pointers (loc.
$2D-$34) to enable the program to run. This is done by BASIC
automatically at the end of a load.

PPMII ENCRYPTION PAGE 84

Now let's look at a more general encryption routine. This one
is called 'ENCRYPT ANY I on the program disk. Here is what it
looks like:

COOO A6 FD LOX $FD No. of pages to do
C002 AO 00 LOY #$00 Start with offset of zero
C004 B1 FB LOA ($FB),Y Load A indirect, indexed
C006 45 FE EOR $FE EOR A with contents of 10c. $FE
C008 91 FB STA ($FB),Y Replace encrypted byte
COOA C8 INY Increase offset
COOB DO F7 BNE $C004 Repeat if not done with page
COOD E6 FC INC $FC Set pointer to next page
COOF CA DEX Decrease # pages left to do
COlO DO F2 BNE $C004 Repeat if not done
C012 00 BRK Jump back to monitor

Memory locations used:
OOFB-FC Two-byte pointer to start of cede being processed
OOFD Number of pages (256-byte chunks) to process
OOFE Location of constant to be EORled with code.

Now for the gory details. Locations $FB-FC hold a two-byte
POINTER to the beginning of the code to be processed. The code
itself doesn't start at $FB; it can be almost anywhere. This
pointer is in standard 10-byte, hi-byte order; that is, if you
wanted it to encrypt code starting at $1234 you would put a
value of $34 into location $FD and $12 into $FE.

Location $FD tells the routine how many 256-byte pages to
process, starting at the address given by $FB-FC. The minimum
value you should use is 1; if you put a 0 here it will try to
do all of memory!

Location $FE holds a constant which will be EORled with each
byte of code to produce the encrypted version. You can use any
value you want here. Remember that a value of $FF (binary 1111
1111) will flip all the bits in the result byte to the opposite
of the original, as in our first routine. Note that a value of
$00 will not cause any change at all! Values in-between will
flip only those bits in the result byte that have a 1 in the
corresponding position in your value.

When you execute the routine, it first loads X with the number
of pages to do and then sets Y to zero. The Y register is used
as an offset as in our first example. This time, the address to
load A from or store it to is formed by first getting the
starting address from $FB-$FC, then adding the contents of Y to
it. This is called indirect indexed addressing. The indirect
part is indicated by putting $FB in parentheses. You can read
these parentheses as Ithe contents of the two bytes starting
at l . The indexing by Y is indicated by the l,y l

•

Having gotten the byte of code to be encrypted into the
accumulator, it is then EOR'ed with the value you stored at
$FE. Note that it is not using the VALUE $FE; it is getting its

PPMII ENCRYPTION PAGE 85

value from LOCATION $FE. The encrypted byte is then stored back
into its original spot. Then Y is incremented. If Y has not
been reset to zero, we loop back to $C004 to continue the page.

When Y does reach zero, we have finished this page, so we
increment the hi-byte of the address pointer ($FC) to point to
the next page. Next we decrement X to reduce the number of
pages left to do. If X is not zero, we have more to do so we
again loop back to $1004. When X reaches zero we are done, so
we exit back to the monitor with a BRK instruction.

To use the routine, first load in a monitor that doesn't reside
at $COOO (LOMON from the program disk will do). Next, load the
routine from the program disk with L 'ENCRYPT ANY', 08. Then
load in your program to be encrypted. Make sure it doesn't use
the same area of memory as the monitor or encryption routine.
If necessary, you can transfer the encryption routine anywhere
you want in memory without having to change it. The only
possible conflict would be if your program occupies locations
$FB to $FE. This is not very likely, but the routine is easily
changed to get around it if necessary.

Before executing the routine, you must put your values into the
memory locations at $FB to $FE. The memory command M OOFS can
be used for this. It will display the current contents of these
locations. You can then type your values over the current ones
and hit RETURN. The monitor will store the values.

Let's try it out. We need a piece of code to use for an
example. Hmm •.. why not let it encrypt a copy of itself? Load
in your monitor and the routine from the disk. Transfer a copy
of the routine down to, say, $6000 with the transfer command: T
COOO C012 6000. Now set the start pointer ($FB-$FC) to $6000
(remember to reverse the order of the bytes), set the number of
pages ($FD) to $01, and put a value in the constant location
($FE) .

After all this, you can execute the routine with a G 1000
command from the monitor. In a flash the code is encrypted and
you're back in the monitor. Now try to disassemble the
encrypted version at $6000. Depending on the constant you used,
you'll generally find absolute garbage. Occasionally you'll get
a few bytes here and there that look like a valid instruction.
This can even increase the protection value of encryption since
it may mislead a pirate looking at your code.

Now you want to get your code back. Before re-executing the
routine you'll have to go back and put the starting address at
$FB-FC again. This is because the routine alters the pointer
as it executes (actually, it only alters the high byte at $FC).
Do a G COOO and look at the code again. It should be completely
restored.

PPMII ENCRYPTION PAGE 86

If you want to look at this from the pirate's point of view,
get set up with the monitor and encryption routine in memory.
Then load the program called 'ENCRYPTED ' from the program disk.
It's less than one block long and starts at $6000. It was
encrypted with this routine using a constant of my own
choosing. Your task is to decrypt it. I'll even give you a
hint: I didn't use $00 or $FF. Happy hunting!

This little exercise will demonstrate that even knowing where
the code is and having the routine to decrypt it, you still
need to know the 'magic' value. This suggests having the value
loaded in separately from the decryption routine, perhaps based
on some other protection scheme. By combining schemes in this
manner, you multiply the difficulty involved in breaking the
program.

We1ve really only scratched the surface of encryption in this
chapter. We haven't even exhausted the possibilities of EOR.
For example, some protection schemes EOR each byte with the
preceding one, rather than the same constant each time. This
sets up a 'chain' that has to be followed to properly decrypt
the code.

Another idea is to use the ADC and SBC instructions of the 6510
(Add with Carry and Subtract with Carry). You can use these
alone or in combination with EOR. For instance, to encrypt a
byte, ADC a value and then EOR with another value. To decrypt.
first EOR and then SBC using the same two values respectively.

You might also find a way to use the shift and rotate
instructions (ASL, LSR, ROL and ROR), increment and decrement
instructions (INC and DEC) or even the BASIC multi-byte math
routines (+, -, *. / etc.).

Basically. anything you can do to a byte or group of bytes can
be an encryption scheme if it can be 'undone ' reliably. This
chapter should serve as a springboard to give you a push in the
right direction. The possibilities are limited only by your own
creativity.

PPMII ENCRYPTION PAGE 87

PROGRAMMING EPROMS

Many times during the course of this manual we refer to
modifying the KERNAL ROM or some other ROM chip. You might just
wonder how this is to be accomplished. A ROM chip is a
permanent memory chip. The instructions contained on the chip
are a permanent part of the physical construction of the chip
and may not be altered. How then do we modify the KERNAL ROM??
With an EPROM programmer, that1s how.

Any program that may be on a ROM can be placed on an EPROM. An
EPROM (Eraseable, Programmable, Read Only Memory) may be
programmed, erased and reprogrammed thousands of times. When
the EPROM is programmed it will retain the information even
when power is turned off, just like a ROM. Whereas RAM (Random
Access Memory) will lose its memory shortly after power is
turned off. EPROM's may be considered as a way to permanently
store a program or other data, just as a disk may be considered
as permanent memory. An EPROM is similar to a disk in that
information may be stored on the EPROM and later erased if
necessary, then more information may be stored back on the
EPROM.

EPROMs are not truly permanent memory. They may be damaged by
physical abuse, they are subject to electrical shocks, static
electricity and other forms of failure. In short, an EPROM is
similar to a disk, with the proper care they will last for
years. If an EPROM is abused it will not last very long.

Why then would we want to put our data on EPROMs?? EPROMs, like
ROMs, may be installed into the computer, the disk drive or the
cartridge port. We may modify the information contained on the
EPROM to perform custom operations and then re-install the
EPROM into the computer. We can have our own custom KERNAL,
BASIC, DOS or cartridge routine. When information is stored on
an EPROM we don1t have to wait for it to load in from disk.

Earlier we discussed the RESET, INTERRUPT and BREAK functions
of the C-64. If, for instance, we wanted to modify the RESET
routine of the computer it would only be necessary to burn a
new EPROM and install it in your computer. If we wish to make a
custom DOS for the disk drive all that is required is to burn
an EPROM and install it in the drive. Pretty simple, isn't it??

Let's follow the procedure to make a new EPROM for the disk
drive. We will modify the DOS ROM that is located from $EOOO to
$FFFF. This is the chip located at the right rear of the disk
drive and numbered 901229. In every drive that we have examined
this chip is socketed and may be easily removed. This way we
may easily replace the DOS ROM with our custom EPROM. Wait a
minute, even if we can just replace the DOS ROM with an EPROM
how do we program the EPROM with our special routine??? With an
EPROM programmer of course!! Just any old EPROM programmer

PPMII PROGRAMMING EPROMS PAGE 88

should work, but if you are going to buy one we have a
recommendation: the PROMENADE by JASON RANHEIM (available from
CSM). This is the most versatile, cost effective and durable
EPROM programmer we can find. It retails for around $100.00. It
can program more types of EPROMs than EPROM programmers costing
over $2000.00. The PROMENADE is packaged in an durable
aluminium housing and is really made to last. All of the
internal circuitry is protected from overloads and improperly
inserted EPROMs. So if you should happen to make a mistake in
the type of EPROM or how you install the EPROM you can not
damage the EPROM programmer (although it is possible to blow a
chip through a mistake).

Let's say that you have an EPROM programmer how do you decide
which type of EPROM to use? (The PROMENADE will program over 25
different types of EPROMs). Well, the EPROM that replaces the
ROM in the drive is a MCM 68764. The MCM 68764 is a pin for pin
replacement for the ROMs in the drive and the ROMs in the
computer. You just unplug the ROM and insert your custom EPROM,
pretty easy huh? The only problem with the MCM 68764 EPROM is
the price: they retail at $40.00 each (ouch). It can get very
expensive burning new EPROMs for the drive and the computer at
$40.00 each. But wait, there is a lower cost solution. This
consists of a 2764 EPROM and an adapter (both available from
CSM). The ROM in the disk drive has 24 pins (as does the MCM
68764). The 2764 EPROM has 28 pins. The adapter allows you to
use the 2764 EPROM in the disk drive. Why bother with an
adapter and a 28 pin EPROM?? The price is why. The 2764 and the
adapter may be purchased for less that $20.00 for both items.
That's less than 1/2 the retail price of the MCM 68764. Now the
price to modify your drive and your computer is down within the
reach of the average person.

The 2764 EPROM has 8K of memory and directly plugs into the
cartridge boards for the C-64. Some 2764's have reached the
surplus market and sometimes can be found at HAMfests for as
little as $3.00 each for perfectly good used EPROMs (a real
bargain). For our money we feel that the 2764 EPROM is the best
buy dollar for dollar. If you only need to put a 2K program on
an EPROM you may use the 2764. You can program only the amount
of memory that you need with the PROMENADE. Then. at a later
date, you can program the rest of the 8K chip. Just as you can
save to a disk until it is full, you may also save to an EPROM
until it is full. After you have programmed an EPROM you can
erase it and reprogram it, just like you can erase disks. In
order to erase an EPROM it is necessary to use ultraviolet (UV)
light. All you have to do is expose the EPROM to UV light for
10-15 minutes and it is fully erased. There are many commercial
EPROM erasers on the market today, the one that we prefer is
call DATARASE by WALLING CO, priced under $40.00 (available
from CSM). EPROMs may be erased by other sources of UV light
(such as the sun), but we don't recommend it.

PPMII PROGRAMMING EPROMS PAGE 89

O.K. back to programming EPROMs. The PROMENADE plugs into the
modem port of the C-64 (don't use any EPROM programmer on the
SX-64 due to a power supply problem of the SX). The software
for the PROMENADE is included and may be loaded from the disk
and RUN. Type: LOAD"PROMOS*",8: then (RETURN), now type RUN.
The screen will display a copyright message and return to the
'READY' prompt. You are now ready to modify the DOS ROM, so

lever the socket. Be insert the ROM shown

lets go.

1). Carefully
drive.

remove the $EOOO to $FFFF ROM from the disk

2). Type: Z (RETURN)
PROMENADE.

- this will zero the socket on the

3). Insert the DOS ROM into the PROMENADE socket and close the
on sure to as on

the PROMENADE.

4).	 Read the data from the ROM with the following commands: the
(L) = the English pound key:
(L)8192,16383,0,48 (RETURN)

5).	 The data from the DOS ROM has now been stored in the
computer from memory location 8192 decimal ($2000) to 16383
decimal ($3FFF). The '0' means to start reading from the
very first byte of the EPROM (byte 0) and the '48 '
determines which type of EPROM (24 pin, 28 pin, 2K, 4K, 8K
etc). The PROMENADE manual fully describes the commands to
be used for various EPROMs.

6).	 If you wish to modify the DOS ROM or to make a disk copy of
the ROM now is the time to do this. If you only want to
burn an exact replacement of the ROM go to step 7 now. Load
a ML monitor and save the DOS ROM memory out to disk. You
should use a ML monitor that resides at $COOO (49152) so
that there is no chance of over writing the DOS ROM.
Remember that the DOS will reside in the computer from
$2000 to $3FFF. If you wish to modify the DOS, it may be
accomplished very easily from the ML monitor and the
modified version may then be saved to disk. A little later
on we will give you some tips on where and how to modify
the DOS. If you have entered a ML monitor it may be
necessary to power down and reload the PROMOS software from
disk after you have saved out the modified version of the
ROM. Then reload the modified version of your DOS ROM.
NOTE: this depends upon the type of ML monitor that you are
using, some monitors may exit properly into PROMOS, others
do not.

7A) •	 If you are going to use the 2764 EPROM to replace the ROM
all you have to do is insert the 2764 into the PROMENADE
and use the following commands to burn the EPROM. The (PI)
= the pi symbol (shifted up arrow)
(PI)8192,16383,0,5,7 (RETURN)

PPMII	 PROGRAMMING EPROMS PAGE 90

Remove the EPROM from the programmer when it has finished
programming (1-2 minutes) and insert it into an adapter.

7B).	 If you are going to use the MCM 68764 EPROM use the
following commands.
(PI)8192,16383,0,48,15 (RETURN)

8).	 Install the EPROM into the disk drive and you are done.
Programming an EPROM takes less that 10 minutes once you
have become proficient with the EPROM programmer.

MODIFICATION OF THE DOS

HARDWARE MODIFICATION OF THE OPERATING SYSTEM FOR MORE THAN
THIRTY-FIVE TRACKS OR FOR EXTRA SECTORS.

Caution: Some drives may not be physically able to go to track
40. The read/write head may become stuck at track 38 on some
drives. This is not serious, just go into the drive and free
the head with your hand if it gets stuck.

This method will require the 'burning ' of replacement EPROMS
for the disk drive. You will be able to add extra tracks or
vary the number of sectors on a track when you use this
technique. One problem will be evident when you change the
number of tracks on the disk: You will only be able to list the
directories of a disk with the same number of tracks as the
drive is set up for. For instance: if you have a forty track
drive you can only list the directories of the forty track
disks. This is due to the way the 1541 wants to find the BAM,
NAME, and ID of the disk. As you add extra tracks you must also
add room for increased area in the BAM (each track requires 4
bytes for the BAM). The BAM will be expanded into the area
normally used by the NAME and ID of the disk. The NAME and ID
must be located immediately following the BAM of the last
track. If you add five tracks to the disk you must increase the
BAM by 20 bytes. The NAME and ID will also be moved 20 bytes on
the disk (the drive will automatically locate the NAME and ID
immediately after the BAM).

The items to change for the extra tracks will be the location
of the end of the BAM (four bytes for each track) and the
comparisons for the maximum number of tracks. The other area of
memory to change, whenever you modify the DOS, is the ROM TEST
($EAE4-$EAE9). This is where DOS checks the ROM to insure that
there has not been any malfunctions of the operating system by
performing a checksum on the DOS ROMs. We will totally bypass
the ROM test, this allows you make any modification to the DOS
that you wish. These are the following locations to change for
a forty track drive.

PPMII	 PROGRAMMING EPROMS PAGE 91

$D08C CHANGE TO $A4 (LOCATION OF BAM+4 bytes/track)
$EAE4 CHANGE TO $EA (ELIMINATE ROM TEST)
$EAE5 CHANGE TO $EA (ELIMINATE ROM TEST)
$EAE8 CHANGE TO $EA (ELIMINATE ROM TEST)
$EAE9 CHANGE TO $EA (ELIMINATE ROM TEST)
$EEEE CHANGE TO $A4 (LOCATION OF BAM+4 bytes/track)

$FD90 CHANGE TO $29 (MAX. # OF TRACKS +l)

$FE88 CHANGE TO $A4 (LOCATION OF BAM+4 bytes/track)

$FED7 CHANGE TO $29 (MAX. # OF TRACKS +1)

If you wish to modify the number of sectors per track, change
the code from $FED1-$FED4. Each byte represents the number of
sectors on the different tracks ($FEDl is for TR 31-35;$FED2 is
for TR 25-30; ETC.). There are certain limits as to the number
of sectors on a disk. Don't try to add too many, it won't work.
As a matter of fact, later in this manual, we will cover just
how many sectors you can put on a track and why. Bytes
$FED8-$FEDA indicate where the sector change will occur (tracks
31, 25 & 18).

How to make the modifications to the disk drive: First locate
and remove the ROM chips from the disk drive. The $COOO-$DFFF
chip is marked 325302, the $EOOO-$FFFF chip is marked 901229.
Both chips are located at the rear of the circuit board. The
$COOO-$DFFF chip is not socketed on some disk drives. If your
chip is not socketed, don't try to remove it from the board
(unless you are proficient at this type of work), just modify
the $EOOO-$FFFF chip. If you just modify the $EOOO chip the
drive will not format 40 track disks nor will the BAM operate
properly (unless you modify both chips). But, you will at least
be able to read and write 40 tracks if you only modify the
$EOOO-$FFFF ROM chip.

Insert the $COOO-$DFFF ROM into your PROMENADE. Down load the
chip memory into the computer. Use a ML monitor to modify the
code as specified above. Follow the instruction outlined above
and in the PROMENADE manual. Then remove the original chip from
the PROMENADE and insert an erased EPROM into the PROMENADE and
burn the EPROM. Insert the EPROM into the proper socket of the
disk drive and use the same procedure on the other chip.

The total time required to complete the process is less than 1
hour and can provide some very interesting results. Don't be
afraid to experiment with the computer or disk drive. Try some
modifications on your equipment and see what fun you can have.

Later on in this manual we offer some more advanced insights on
EPROM programming. The information contained in those chapters
is not essential to programming EPROMs. If fact the information
provided is for the experienced programmer only!! If you only
wish to program a few of the 'normal' EPROMs, it does not get
any more difficult than presented here.

PPMII PROGRAMMING EPROMS PAGE 92

6510 MICROPROCESSOR AND THE PLA

Bear with us in this chapter. This information can get very
confusing. It is important to have at least a basic
understanding of how the microprocessor and the associated
memory circuits work. We are not going to make an electronics
engineer out of the reader. We are only going give you some
ideas on how the computer works. We will use some big fancy
words in this chapter. Don't try to remember all of them. We
will explain the important terms and concepts.

The C-64 uses the 6510 as its microprocessor chip. The 6510 is
closely related to the more common 6502 microprocessor. The
6510's internal architecture is identical to the MOS Technology
version of the 6502. This is to provide software compatibility.
Both the 6502 and the 6510 use the same instruction set. The
most important difference between the 6510 and the 6502 is the
eight bit Bi-directional 1/0 port feature of the 6510.
Actually, only six bits (I/O lines) are available in the
version used in the C-64. The other two bits of the 1/0 port
have been reserved for the Non Maskable Interrupt an~ the Ready
1i nes.

Ok, let's try to understand what all those big fancy words
mean. First of all let's define just what a microprocessor is.
A microprocessor is the central processing unit of the
computer. The microprocessor will perform a large number of
functions, including:

1).	 Getting instructions and data from memory.

2).	 Decoding instructions.

3).	 Performing arithmetic and logic operations specified by the
instructions.

4).	 Providing timing and control signals for all the components
of the computer.

5).	 Transferring data to and from Input & Output (1/0) devices
(printers, disk drive, monitor, keyboard, etc.).

6).	 Responding to signals from the 1/0 devices (interrupts,
etc).

The 6510 processor will perform these functions based upon what
the program instructions tell the processor to do. This is what
makes the computer so flexible. When we want to change the
function of the computer, all we have to do is give the
computer new instructions (such as a program). The 6510 will
perform any combinations of functions based solely upon the
instructions that it receives.

PPMII	 6510 MICROPROCESSOR AND THE PLA PAGE 93

The 6510 can address up to 64K (65536 bytes) of memory. This is
the maximum number of addresses (memory locations) that the
6510 can look at anyone time. A memory location is an area in
the computer that can contain (store) a value. The value
contained in each memory location must be between 0 and 255
($00 to $FF). These memory locations are where the computer
program will be stored. The memory can either be in RAM (Random
Access Memory) or in ROM (Read Only Memory). It does not matter
to the computer if the program resides permanently on a
computer chip (ROM) or will be erased when the power is lost
(RAM).

The C-64 contains a full 64K of RAM and it contains another lK
of 4-bit Color RAM. It also contains a full 20K of ROM. Wait a
minute, 64K + lK + 20K = 85K. The 6510 can only address a
maximum of 64K!! How is it possible that we have 85K of memory
in the C-64?? Well, the 6510 microprocessor can only see 64k
of memory at anyone time. The rest of the memory is hidden
from the microprocessor by a device known as a Program Logic

important relationship that should be understood. Quite simply

Array (PLA). The PLA will
or out depending upon

switch various
the specific

sections of memory
requirements of

in
the

computer. •

The function of the microprocessor and the PLA is a very

the PLA will turn one section of memory on and another off,
based upon the requirements of the program. If the programmer
wants the microprocessor to see RAM at the memory location
normally occupied by BASIC ROM, all the programmer has to do is
change the value stored in memory location $0001. Memory
location $0001 is the eight (six) bit I/O register. Based upon
the bit pattern in location $0001 the PLA will automatically
reconfigure memory by enabling and/or disabling the proper
memory chip(s). Memory may also be reconfigured through the PLA
by installing a cartridge in the computer. Just as we can
change the memory configuration by changing location $0001, we
can accomplish the same task by grounding the EXROM and/or GAME
lines of the cartridge port.

We have now established that the C-64 does contain 85K of
memory and that the 6510 processor can access only 64K of it at
a time. By simply having the PLA enable or disable the various
chips, the computer can see different memory at the same
location. The PLA may be controlled either by software (a
computer program) or by hardware (the cartridge board).

Now that we have a basic understanding of how the PLA and the
microprocessor function, let's see what happens on power-up.

When we first turn our computer on, the 6510 microprocessor
will set its LORAM, HIRAM and the CHAREN lines high. For our
purposes we will consider a line to be high when it is 5 volts
(appx.) and a line is said to be low when it is at 0 volts. The
computer will interpret a line that ;s high as a binary 1 and
interpret a line that is low as a binary o. The program

PPMII 6510 MICROPROCESSOR AND THE PLA PAGE 94

counter t the stack pointer and the flags of the status register
will all co~tain indeterminate (random) values. At this point
the microprocessor is lost. Since none of the registers retain
any information after power is turned off t all values will have
to be reset before any meaningful data may be processed. How
then t does the computer reset these values? With a RESET t of
course! The C-64 contains a special circuit that forces the
computer to RESET upon power-up. Every time the power is turned
on t the microprocessor will be RESET. This is exactly the same
RESET condition as when you press your reset button (providing
you have installed one).

When the computer is RESET the microprocessor will set the
LORAM t HIRAM and CHAREN lines high (5v) and the microprocessor
will do an indirect jump to the address contained at memory
locations $FFFC and $FFFD. These two locations are referred to
as VECTORS. A VECTOR does not contain the actual routine that
the computer will execute upon RESET. What this VECTOR does
contain is the LOCATION where the RESET routine may be found.
In other words t the locations $FFFC and $FFFD will tell the
computer where to find the actual RESET routine. ON the C-64
the memory location $FCE2 (64738 decimal) is the actual entry
point into its RESET routine. We have covered the RESET routine
that the C-64 uses elsewhere in this manual t so we will not
cover it in depth here. It is important to note that the
software RESET (SYS 64738 or JMP $FCE2) is different from the
hardware RESET (actually grounding the RESET line of the
m. i cro~ roc es so r).. I ._h a_r.:5!-	 ..p~.t! orfll_ a11 of t.. he ..-:\ ..'\..,h.E;!.__ wa._<_.r~BE_?~ T ~_i._l .. !._	 .._.__
f.yn.ctl an~..of.t~~ Jioftware RESET_ but 51 rst 1t W1Tl·-'S~t:- '-'ttrn' r\ J\
~_M_~ __ t.he HIBAMand the.. CH(\RfJLJjne"s ...b1gh. Any references made \.YJ
1n this chapter to a RESET refers to a hardware RESET unless
otherwise noted.

As you can see t the computer will 'look' to the memory location
$FFFC and $FFFD for its RESET VECTOR. If we were to 'burn'
ourselves a new KERNAL ROM (EPROM) and substitute it for the
original ROM t we would be able to force the computer to perform
a different RESET routine. It must be noted that if we wish to
use an alternate RESET routine it will be important to perform
a few specific functions early on in our routine.

1).	 SEI - Set the IRQ interrupt disable.

2).	 The stack pointer should be set to a specific value
(usually $FF).

3).	 The Decimal flag should be cleared (CLD).

4).	 The Carry flag should be either set or cleared (as
required) prior to performing any arithmetic functions.

5).	 Clear the interrupt prior to leaving the RESET routine.

These are functions that should (must) be performed in any
RESET routine.

PPMII	 6510 MICROPROCESSOR AND THE PLA PAGE 95

We have established that the microprocessor must be RESET upon
power-up. Now let's find out why the microprocessor looks to
ROM for its RESET routine rather that looking to RAM.

used for I/O, the other lines used for other

Earlier we mentioned that the 6510 contains an 8-bit
Input/Output
microprocessor

(I/O)
that

port. In the
is contained in

v
the

ersion
C-64

of
only 6

the
lines

6510
are

two are purposes
(NMI and READY lines). Each of these six lines correspond to
bits of memory location $0001. If we consult figure xxl we can
see six pins of the microprocessor that are labeled PO, Pl, P2,
P3, P4, & P5. These pins correspond to the bits 0 thru 5
contained in memory location $0001, respectively (i.e. PO will
reflect bit 0 etc.).

Further explanation of just what an I/O port is required. An
I/O port is a special area of the microprocessor that is
reserved for communications with other devices. It consists of
a few selected lines (pins) of the microprocessor that may be
controlled by another device (when the lines act as inputs) OR
the lines may be used to control other devices (when the lines
act as outputs). When any I/O line is set to input the
microprocessor will automatically sense any change in the
values (voltage level) placed on this line by other devices. A
change in t~e voltage level applied to the line will cause the
corresponding bit in memory location $0001 to change. If the
voltage applied to one of these pins is 5 volts, the
microprocessor will interpret this as a one and change the
appropriate bit in location $0001 to a value of one.
Correspondingly, when an I/O line is set to output the
microprocessor will 'look' to memory location $0001 and set the
appropriate output line high (5v) or low (Ov) based upon the
appropriate bit in $0001.

We have established that location $0001 is the actual I/O port.
We now need to know how to switch these lines from Input to
Output. This is controlled by memory location $0000. If a bit
of memory location $0000 is set to a 1, the corresponding bit
of location $0001 is set to an output. Likewise, if a bit of
memory location $0000 is set to a 0, the corresponding bit of
location $0001 will be set to input. For example, if we set bit
o of location $0000 to a 1, bit 0 of location $0001 will be an
output. Each line of the I/O port may be set independently of
the other lines. Memory locations $0000 and $0001 are contained
'on board' the microprocessor. When we load or store a value in
memory locations $0000 & $0001 this is actually being done
inside the microprocessor. All other memory locations are
outside of the microprocessor in the 'normal' RAM or ROM or I/O
devices.

As we said before, only six lines of the I/O port are used by
the microprocessor as actual I/O lines. Three of the six I/O
lines are used only for the cassette recorder and will not be
discussed any further (P3, P4 & P5 are for the cassette). Lines

PPMII 6510 MICROPROCESSOR AND THE PLA PAGE 96

PO, Pl & P2 are used by the microprocessor to control access to
the various areas of memory via the PLA. Refer to figure 6510 &
PLA-l for the following discussion. On power up or on RESET,
the microprocessor will automatically set lines PO, Pl, & P2 to
outputs and force them high (5v). This should be considered as
the 'normal I state of the microprocessor. During a RESET, the
RESET routine will verify that the proper lines are set to
outputs and that they contain the proper values by storing the
appropriate values at locations $0000 & $0001. If we examine
memory after a RESET, we will see that location $0001 contains
a value of $37. The low nibble (7) indicates that bits 0, 1 & 2
are indeed set high. We will also see that memory location
$0000 contains $2F. The low nibble (F) indicates that lines PO,

lines of the microprocessor will be high (5v). These lines

Pl, P2, & P3 are set to outputs.

We have already mentioned that the PLA controls
memory that the microprocessor will see. Let's
specific look at what controls the PLA. Earlier
that upon power up or RESET the LORAM, the HIRAM

the area of
take a more
we mentioned

and the CHAREN
set

correspond to three bits of memory location $0001 (bits 00, 01
& 02 respectively).

Line PO is the LORAM line. Normally this line is high (5v). The
LORAM line controls the BASIC interpreter memory only
($AOOO-$BFFF). When the LORAM line is high (5v) the PLA will
cause the microprocessor to see BASIC ROM at this location
($AOOO-$BFFF). When the LORAM line is low (Ov) the PLA will
cause the microprocessor to see RAM at this location
($AOOO-$BFFF). We can easily control the LORAM line by changing
memory location $0001 from a $31 to a $36 (setting bit 0 to a
0) •

Line Pl is the HIRAM line. Normally this line is high (5v). The
HIRAM line controls the KERNAL memory ($EOOO-$FFFF) and BASIC
memory ($AOOO-$BFFF). When the HIRAM line is high (5v), the PLA
will cause the microprocessor to see KERNAL ROM at this
location ($EOOO-$FFFF) and allows LORAM to control BASIC ROM.
When the HIRAM line is low (Ov) the PLA will cause the
microprocessor to see RAM at BOTH KERNAL AND BASIC locations
($AOOO-$BFFF AND $EOOO-$FFFF). We can easily control the HIRAM
line by changing memory location $0001 from a $37 to a $35
(setting bit 1 to 0). Be sure to set the interrupt (SEI) prior
to setting the HIRAM line low and then clear the interrupt
(CLI) upon resetting the HIRAM high.

It is important to note that if we wish to turn off the KERNAL
ROM it will also cause the BASIC ROM to be turned off. If the
computer is configured, using HIRAM, to see RAM at $EOOO-$FFFF
it will also see RAM at $AOOO-$BFFF. Remember that BASIC may be
turned off by itself (with LORAM), but if we turn off the
KERNAL ROM (with HIRAM) we will also turn off the BASIC ROM!!!

If line PO (LORAM) and Pl (HIRAM) are both set low (Ov) a very
interesting thing will occur. The computer will now be

PPMII 6510 MICROPROCESSOR AND THE PLA PAGE 97

configured to see all 64K of RAM. The KERNAl ROM, the BASIC ROM
and the I/O devices at $DOOO-$DFFF will ~ll be switched out.
The microprocessor will now see only the 64K of RAM. This
configuration will allow the microprocessor to use all 64k of
RAM. We can easily control both the HIRAM and the LORAM lines
by storing a value of $34 at memory location $0001. Keep in
mind that the user will have to switch the I/O devices at
$DOOO-$DFFF back in for any I/O operations (communications with
the screen, disk drive, keyboard, etc.).

line P2 is the CHAREN line. Normally this line is high (5v).
The CHAREN line controls the I/O devices at $DOOO-$DFFF. When
the CHAREN line is high the microprocessor will see I/O devices
(VIC chip, SID chip and the CIAs) at this area of memory. When
the CHAREN line is low (Ov) the microprocessor will see the 4k
character generator ROM at this location. The computer will not
be able to access any I/O devices if the CHAREN line is low.
The only time that the CHAREN line would normally be held low
is if the user wished to download the character ROM to RAM. To
set the CHAREN line low all one has to do is to change memory
location $0001 from $37 to $33 (setting bit~to 0).

We have now covered all the software seleci~ns of the PLA.
Remember that the PLA will select a specific area of memory
based upon the requirements of the microprocessor. All one has
to do is to set byte $0001 to a specified value and the PLA
will do the rest. Before we proceed into the hardware control
of the PLA, let's take a look at the normal sequence of
operation of the microprocessor.

When the microprocessor is in operation the program counter
will keep track of the memory location that is currently being
accessed. The following is a brief description of the sequence
of events that occurs when the microprocessor gets a byte of
data from memory.

1).	 The microprocessor will send out the address of the current
byte of memory that is requested. The microprocessor will
also specify if the byte is going to be read or to be
written. In this example we will assume a read of data (LDA
- LoaD the Accumulator).

2).	 The PLA will decode the address specified by the program
counter and select (enable) the chip required by the
microprocessor.

3).	 The selected memory chip will decode the address specified
by the microprocessor and select the appropriate memory
location from within the chip.

4).	 The selected chip then makes the data available and the
microprocessor loads the data into the appropriate
register.

PPMII	 6510 MICROPROCESSOR AND THE PLA PAGE 98

All of this sounds pretty time consuming, doesn't it??
Actually the time required to fetch a byte of data from memory
takes less than 1 millionth (1/1,000,000) of a second in the
C-64. The instruction JMP $4000 (4C 00 40) takes only 3
millionths of a second to execute. 1 millionth is used to fetch
and decode the instruction (4C), 1 millionth to fetch the low
byte (00), 1 millionth to fetch the high byte (40) and place
these values on the program counter. Thereby effecting the JMP
instruction in only three clock cycles.

HARDWARE CONTROL OF THE PLA

The memory that the microprocessor sees may also be controlled
by hardware. Hardware control requires an actual connection
from the pins on the cartridge port to ground. Two of the lines
connected from the PLA to the cartridge port will control
memory configuration. The PLA will monitor the voltage level of
these two lines. These two lines are called the EXROM line and
the GAME line. These two lines are normally high (5v). When
either (or both) of these lines are grounded that PLA will
reconfigure the memory that the microprocessor sees.

Grounding only the EXROM line will cause the PLA to reconfigure
memory so that the microprocessor will look to the cartridge
port to find the memory from $8000-S9FFF. All of the other
memory locations will remain intact. BASIC ROM, KERNAL ROM a~d

the I/O devices will remain in effect. Under normal
circumstances the EXROM line would be groundea only if a
cartridge had been installed. If we were to ground the EXROM
line without a cartridge installed the ~icroprocessor would not
find any memory at these locations ($3000-$9FFF). The PLA does
not care if any memory exists at the memory locations that the
microprocessor is lookl~g at. If we ground the EXROM line
without plugging i~ a cartridge, the PLA will prevent the
microprocessc r from seeing any memory other than what is at the
cartri~~e port (nothing in this example). The microprocessor
w~ll only find random garbage in this area. This is a way for
the PLA to prevent the microprocessor from seeing the RAM
normally at $3000-$9FFF. REMEMBER THAT WHEN THE EX ROM LINE IS
GROUNDED THE PLA WILL CAUSE THE MICROPROCESSOR TO SEE ONLY THAT
I1EiiORY THAT IS PLUGGED INTO THE CARTRIDGE PORT. THIS WILL
OCCUR WHETHER THERE IS A CARTRIDGE PLUGGED IN OR NOT!

Grounding only the GAME line will cause the PLA to reconfigure
memory so that the computer will be able to use cartridges
designed for the 'ULTIMAX' system. The KERNAL ROM and the BASIC
ROM will be switched out and the microprocessor will look to
the cartridge port for memory in the $8000-$9FFF and the
$EOOO-$FFFF range. This configuration of memory will cause the
microprocessor not to see ANY memory in the following areas of
memory; $1000-$7FFF and $AOOO-$CFFF ('images ' may appear in
these open areas). Memory locations $OOOO-$OFFF will appear as
the normal RAM and $DOOO-$DFFF will appear as the normal I/O
devices. The microprocessor will look for memory locations

Ppj'lll 6510 MICROPROCESSOR AND THE PLA PAGE 99

$8000-$9FFF and $EOOO-$FFFF on the cartridge port. Again, this
memory configuration is only for those cartridges that emulate

normal of cartridge memory ($8000-$9FFF). The other 8K

the 'ULTIMAX' system.

Grounding BOTH the EXROM and the GAME lines at
will cause the PLA to reconfigure memory
microprocessor will look to the cartridge port
locations $8000-$BFFF. This configuration will
16K of continuous cartridge memory. 8K will

the same time
so that the
for memory at

allow the use of
reside in the

area
will reside in the area of memory that is normally reserved by
BASIC ($AOOO-$BFFF). This memory configuration will also allow
for the programmer to switch between the RAM and ROM located at
memory locations $8000-$9FFF. By controlling the LORAM line the
programmer may select RAM or cartridge ROM. When the LORAM line
is high the PLA will cause the microprocessor to see ROM at
location $8000-$9FFF. When the LORAM line is low the PLA will
cause the microprocessor to see RAM at locations $8000-$9FFF
and the microprocessor will still see the cartridge ROM located
at $AOOO-$BFFF.

We have now covered the major functions of the PLA and
microprocessor combination used in the C-64 as they relate to
memory management. The PLA also has a few other important
functions. When the microprocessor writes to an area of memory
that contains both RAM and ROM (BASIC ROM $AOOO-$BFFF, for
example) the PLA will allow the microprocessor to write to the
underlying RAM. The PLA will decode the microprocessor's
instructions when it is reading and writing. The PLA will then
'decide' what memory that the microprocessor should have access
to (RAM or ROM). If the microprocessor is going to write (STA)
a value in memory, the PLA will select the appropriate memory
(ROM can not be written to). If the microprocessor will be
reading (LOA) a value from memory, the PLA will select the
proper area of memory based upon the LORAM, HIRAM, EXROM and
GAME lines. The one deviation from the preceding example is
where the microprocessor writes to the memory at $DOOO-$DFFF.
This memory normally contains the I/O devices, rather than RAM
or ROM. Because of this, the PLA will allow the microprocessor
to both read and write to these addresses. These address do not
normally refer to actual RAM/ROM memory locations used by the
6510. They primarily contain the onboard registers of the I/O
devices and the color RAM used by the VIC chip. The VIC (video)
chip, the SID (sound) chip, the CIA's (communication) chips and
the color RAM are located in this area of memory.

The VIC chip can also access (look at) memory. The VIC chip can
only address 16K of memory at anyone time. The VIC chip also
causes the PLA to select what area of memory is available to
the VIC chip. For instance, when the VIC chip wants to access
the CHARACTER ROM, the PLA will select this chip rather than
the I/O devices normally located from $DOOO-$DFFF. For our
purposes we have covered all that is need to be said about the
6510 microprocessor and the PLA.

PPMII 6510 MICROPROCESSOR AND THE PLA PAGE 100

If you have a hard time digesting all the information presented
to you in this chapter, DON'T WORRY ABOUT IT!!! A tremendous
amount
review

of information has been presented
a few of the more important concepts:

here. Let's just

1). The 6510 microprocessor is RESET upon power up.

2). Whenever the microprocessor is RESET the
and the CHAREN lines will be set high.

LORAM, the HIRAM

3).	 The PLA will control the microprocessor's access to various
areas of memory.

4).	 The PLA may be controlled by both hardware and software
methods.

5). By grounding the EXROM line we can prevent the
microprocessor from seeing RAM at locations $8000-$9FFF
(very important).

6).	 A software RESET (SYS 64738 or JMP $FCE2) is different than
a hardware RESET.

PPMII	 6510 MICROPROCESSOR AND THE PLA PAGE 101

-- ---. ~

LlmAM 9

RTFfAM 8

e-HAAEN 7

6

5
4

3
2

27

26

RIW 25

eXROM 24

GAME 23
22
21

~

10 FO ~IIr P3 Pc Ps ~'

13

12 ROML

11 AOMH

10

FVCC AEC 5 I,amAf;1
F'

'2
2

'3 F3
I. F.

m

Po 29 FITJ!l:At1
P, 28 ~
P2 27

40

A'5 '23 -
A,. -22
A'3 20
A,Z 19

18
A,O

17

's Fs
Ie F6

'7 PLA F7

'8 FE

'9 Vee
A" O£"0

GNO
Av '" 16 "2
As 15

"3A7 14 I,.
As 13 ',SAS 12 _

6510A A4 I"
A3 10
AZ -9
A, ra- -
Ao "1
0 7 !30
06 -131
Os -32
04 -'33
03 -34
Oz -35_
0, '36
DO rw-
~ 39Rfi{

138
oIJol N '1""
IM~

18
17 KERNAL

16 CHAROM
15

~NC y+51 .

14B

-Nm
- GNO _. ROY J2 -

10
IN

I

2

IIClSA10Cl1l

IIUI40

ROY 39 82
IN

3iiiQ Riii 3.

I NM' 080 37

5 AEC 081 31

I vee 082 35

7 AO 083 34

I"

I 17 -n

'I 11

• AI

!I lIZ

D81 J3

085 32

I II lIn 10 A3 D81 31

• I! 110 15 II A4 D87 30

5

I

,

I

I

I.

II

II

II

10

III I.

III n

113 II

I" II

US 1O

12 AS

U AI

-II A7

15 AI

PO 2!1

PI 2.

P2 27

P3 21

MIn III .1 II All PI 25

II F' '0 11

II '5 " .,
Uf4 fl .1

I. G\IO '1 It

Ull _ LOGIC lUlU'_....

17

II

\9

zo

AIO

All

AU

AU

P5

AI5

All

GND

21

23

22

21

PPMII 6510 MICROPROCESSOR AND THE PLA PAGE 102

GCR RECORDING

When we read the ads for the latest copy programs we see
phrases like copies half-tracks, sync to particular reference
sectors, reproduce density/frequency alterations, non-standard
sectors, singular sync, extra sectors, non-standard sync, gap
bytes, bit or nybb1e copier, and so on. The days of the 'bad
blocks' are quickly coming to an end. The stakes have been
raised. In order to understand and deal with these newer
protection schemes, you will have to understand the way the
1541 disk drive works on a more fundamental level. In this
chapter the so-called GCR (Group Cyclic Recording or Group Code
Recording) method of encoding data on the disk will be
explained. An understanding of this little known subject is
essential if you want to be able to use some of the tools
provided with this book. With the tool-kit provided and an
understanding of this chapter you will be able to look directly
at the header information and even at the so called 'gap bytes'
of any sector on the disk. You will be able to 'see' why you
are getting an error 29, 23 etc when you try to read a
particular block of
will be able to see
can compare your
fundamental level.

information from the disk. Furthermore
if any funny business has taken place.
copy disk to the original on a

you
You

very

Before getting into
explain the purpose

a discussion of the GCR
behind converting ASCII

code we will first
codes into this GCR

code. The basic reason has to do with the way in which data, in
the form of binary digits or 'bits', are actually written onto
the disk.

If you were able to 'watch' the read/write head of your disk
drive as it created a bit-pattern on the disk, you would find
that, contrary to popular belief, the on/off or 1/0 pattern
does not correspond to a magnetized/non-magnetized pattern of
little magnetic domains on the di~k. In other words 1/0 does
not correspond with magnetized/non magnetized. Instead, a
binary 1 corresponds to a change in magnetic state while a
binary zero corresponds to no change. This concept is not easy
to appreciate and yet, behind it is the reason for the GCR
code. If we add one more concept namely that of the 'clock
cycle', all this should become clear!

The disk drive uses an internal timer when data is being read
from or written to the disk. The timer will keep track of how
long a bit of data should be. The timer can operate at four
different speeds (clock rates). The clock rate that the disk
drive uses is dependent upon the track that is being read.
Tracks 1-17 will use one clock rate, 18-24 will use another,
25-30 another and 31-35 still another clock rate. If the disk
drive uses a higher clock rate, more bits per second will be
written to the disk. Conversely, if the disk drive uses a lower
clock rate, less bits per second will be written to the disk.
The term clock rate may also be used synonymously with the term
density.

PPt.n I GCR RECORDING PAGE 103

The 1541 disk drive has an internal crystal-controlled clock
which operates at the rate of 16 MHz (sixteen million cycles
per second). If the disk drive 'clocked out' bits at that rate
we could theoretically increase the number of bytes a disk
could hold by a factor of four. Unfortunately, the data bits
would be so close together on the disk at this clock rate, that
a change in the magnetic state could not be accurately detected
by the 1541. The internal clock frequency is divided down to
provide a more reasonable timing rate (for the sake of
simplicity. just remember that the clock rate of 16 Mhz is
divided down). The actual timing relationship is fairly
complicated and will not be discussed here in detail. The clock
rate is first divided by a value of 13. 14. 15 or 16. depending
upon which track the drive is trying to access. Tracks 1-17
will use a divisor of 13, tracks 18-24 will use 14. tracks
25-30 will use 15 and tracks 31-35 will use 16. The divisor
that is used here determines the denstiy that the track will be
written at. Each clock rate will again be divided. this time by
a divisor or 4. We have now obtained the actual bit density
that will be used for the track.

Let's try just one example of bit density. The internal clock
runs at 16 Mhz. On the outer tracks the divisor used to
determine density is 13. When 16 Mhz is divided by 13 you get
1.2307 Mhz. Dividing 1.2307 Mhz (1,230.700) by 4 equals 307,692
bits per second. The bit density of 307.692 bits/sec on tracks
1-17 is the highest used on the 1541. The number of bits/sec
is higher on the outer tracks because the disk moves faster as
we get farther from the center. Since the disk is moving
faster, we can write bits at a faster rate without them getting
too close together. On inner tracks like 31-35 the clock rate
is only 250.000 bits/sec. This insures that the distance
between successive changes in the magnetic state on the disk is
large enough to prevent Ib1urring'. The concept of Idensity' is
very important to understand. Some of the latest protection
schemes play games with the density. This is discussed at
greater length elsewhere in the book.

The Read/Write (R/W) head of the disk drive plays an important
role in data storage. When the drive is writing data to the
disk. the data will be converted from data bits into electrical
impulses. The R/W head will convert these electrical impulses
into magnetic areas on the surface of th~ \isk. These areas on
the disk will retain the magnetic information stored there. The
R/W head is similar to an e1ectro-magneti~ (remember your high
school science classes?). When the disk drive is reading
information from the disk drive, the R/W head will convert the
magnetic areas on the disk back into electrical impulses. These
impulses will be interpreted by the l~gic board of the disk
drive and converted back to data b:ts.

PPMII GCR RECORDING PAGE 104

We can now get a more visual image of just how information is
placed on the disk. Let's say that we wish to store the binary
pattern of 11010011 onto the disk. During the first clock cycle
the write circuitry will reverse the flow of the electrical
current to the R/W head. The change in current will produce a
reversal in the magnetic field produced by the R/W head. This
reversal of the magnetic field corresponds to the first binary
1 in our number. Now, during the second clock cycle, the
electrical current to the read/write head will be reversed
again. This change in current would induce another reversal in
magnetic field on the disk. The change in magnetic field on the
disk corresponds to the second binary 1 (remember, a CHANGE in
magnetic zone corresponds to a 1). During the third clock cycle
the read/write head current and head magnetization would remain
unchanged. Since the magnetic state did not change, this will
be interpreted as a binary 0 when read. Then in the fourth
clock cycle the currrent/magnetization will change again to
represent another 1 bit. This process will continue until all
the data has been written. Remember that a 1 bit written to the
disk will produce a CHANGE in the magnetic zone on the disk,
and a 0 bit will NOT produce a change.

During the read mode of the disk drive the same basic procedure
applies. The R/W head will convert changes of magnetic zone on
the disk into electrical impulses. These electrical impulses
will then be converted into binary digits (bits of data) by the
logic board. When the disk drive is reading data, the clock
will be used to time the gaps between changes in magnetic zones
on the disk, using the appropriate clock rate. If a change in
the magnetic zone occurs during the time specified by the
clock, a binary 1 will be registered. If time runs out before a
change in the magnetic zone is detected, a binary 0 will
result.

Now we can get to the reason for the existance of the GCR code.
Remember, a binary 0 corresponds to no signal coming from the
read/write head during a given clock cycle. Suppose that a disk
is being read on a drive that runs slightly slower (or faster)
than the one on which it was created. If the information being
read happened to contain many binary zeros in a row e.g.
10000001, the information could easily be misinterpreted. With
the drive speed a little slow, it might appear to the
read/write head that no change in the magnetic zones had taken
place in 7 clock cycles, although in the example above there
are only 6 zeros in succession. At a slightly fast drive speed
the change could come early, and thus the read/write head will
only see five zeros non-change intervals. Thus it is very
important that we never have very many zeros in succession.
Unfortunately much data saved to the disk drive does have many
zeros in succession. Enter the GCR coding system.

By now you should be somewhat familiar with the ASCII code.
When you use your machine language monitor to examine the
memory of the computer you see pairs of hexadecimal digits.
Each hex digit is called a nybble. You will also notice, when
you look at the computer's memory, that there are often places

PPM I I GCR RECORDING PAGE 105

in which there are many zeros in succession. A hex zero nybble
($0) translates into %0000 in binary. We have discussed the
reasons why several zeros in succession can make it difficult
or impossible to interpret the data correctly when read from
the disk. What happens in the GCR is similar to a direct
substitution code like ASCII, except that we increase the
length of the Imessage'. A hex byte (8 bits) is broken down
into its individual nybbles (4 bits each). Each nybble (4 bits)
is directly replaced by a 5-B1T GCR code. To convert from hex
to GCR (or vice versa) all one has to do is look in the GCR
table below and substitute one value for the other. Of course
the GCR code will be 20% larger than its hex counterpart, since
4 bits are replaced by 5. Following is a table of GCR codes:

Table GCR-l: GCR Code

HEX Binary GCR

0 0000 01010
1 0001 01011
2 0010 10010
3 0011 10011
4 0100 01110
5 0101 01 111
6 0110 10110
7 01 11 101 11
8 1000 01001
9 1001 11001
A 1010 11010
B 1011 11011
C 11 00 01101
D 11 01 11101
E 1110 1111 0
F 1111 10101

An examination of the GCR codes reveals that no combination of
two GCR nybbles will ever yield more than two 0 bits in
succession. This insures accuracy in interpreting the bit
pattern even when drive speeds are not perfectly matched.
Second, no two successive GCR nybbles will ever generate a
pattern containing more than eight 1 bits in a row. This is
also important since the DOS assigns a special significance to
a pattern of 10 or more 1 IS in a row. This is the so-called
Isync mark' which will be discussed in more detail later.

Since hex digits are converted to GCR when data is written to
the disk, this makes it difficult to interpret 'raw l data from
the disk. The tool-kit provided with this book has a program
(GCR READ) which allows you to find a sync mark and then read
1000 GCR bytes into the buffer in the disk drive. This data can
then be transferred to the computer's memory, where you can
examine it with your machine language monitor. (Note: If you
have a copy of D1-SECTOR's DRVMON, you can 'look ' directly into
the disk drive's memory and avoid the time spent transferring

PPM I I GCR RECORDING PAGE 106

data to and from the 1541. You can also disassemble and modify
routines in the disk drive.) If you use the interpret mode of
the monitor you will find that the ASCII representation of the
GCR data looks like garbage. In order to make sense out of this
information you will have to convert it from GCR to binary
form. Following is an example using one of the headers from
track 35. However, in order to make sense out of this
information we will digress slightly into a review of the
structure of the 'header' of a data block.

A sector on a disk actually contains quite a bit more
information than is revealed by a track and sector editor.
First comes a sync mark. Remember, a sync mark consists of 10
or more (usually 40) 1 bits in succession. The sync mark is a
unique 'finger print' which allows the drive to find a
reference point. After the sync mark comes the header
identifier byte. This is the hex value $08 and tells the drive
that the information following is header information as opposed
to data. Now comes the header checksum byte. This byte is
obtained by exc1usive-oring (EOR) the track number, the sector
number and the two 10 bytes (101 and 102). The DOS always
calculates the checksum expected and compares it to the header
checksum found on the disk. If a difference is found an error
27 is signalled. After the header block checksum on the disk
comes the sector number, the track number, and then the two 10
bytes in reverse order (102, 101). Note that these four bytes
are shown in the wrong order in the diagram in the back of the
1541 USER'S GUIDE. Following the 10 bytes come two $OF bytes
(not shown in the USERIS GUIDE) and then the header gap, which
consists of eight $55 bytes. The header gap bytes simply
provide padding which allows the drive time to recover before
encountering the data block.

Immediately after these header gap bytes comes another sync
mark and then the data block identifier byte, which is a hex
$07. This identifier ($07) is necessary so the DOS can tell the
difference between the header block and the data block.
Following the $07 are the 256 bytes of data you normally see
with a track and sector editor. Finally there is a data block
checksum byte whose value lets DOS know if some of the data has
been corrupted. Again this checksum is obtained from EORling
the 256 data bytes together. If the checksum found after the
data block does not match the calculated value, an error 23 is
generated. (Note: When an error 23 is signalled, the data has
already been read into disk drive memory and can at least be
partially recovered. This is not true of a header checksum
error, error 27. However, using the tools provided with this
book you could read the raw data after the error 27 and recover
it!). After the data checksum comes two $00 bytes for padding
and then an intersector (tail) gap of variable length before
the next sector's sync mark.

PPMII GCR RECORDING PAGE 107

-----~!.,

n. }l;:. I /
J

(-,

You may be wondering why the information in table GCR-2 /~oes
not seem to can for m tot his pat t ern. Whereare the "-m and
$07?? Why do there seem to be 10 header gap bytes? The answer
is that we are looking at a stream of 10-bit GCR bytes which
are being displayed in 8-bit segments. Kind of confusing?
Remember, the raw data that is read back in from the disk is in
GCR coding. GCR coding implies ten bits per byte. When we view
these data bits from the ML monitor we only see 8 bits at a
time, so the extra bits from one GCR byte get tacked on to the
beginning of the next byte.

We will now decode the header information in line 5000 in table
GCR-2. We must first convert the 8-bit hex digits into binary
to get the actual bit stream. Then we will regroup the bits
into groups of 5 and match these 5-bit GCR nybbles with the GCR
code in table GCR-l

Starting with EA 52 67 A5 36 53 77 5E 95 55 etc. we get:

E A 5 2 6 7 A 5 3 6

1110 1010 0101 0010 0110 0111 1010 0101 0011 0110

5 3 7 7 5 E 9 5 5 5

0101 0011 0111 0111 0101 1110 1001 0101 0101 0101

We must now regroup these 4-bit nybbles into 5-bit GCR nybbles.
There is, however, one problem we must resolve before we can do
this. The routine which reads the GCR code from the disk will
also try to read the sync marks from the disk. The hardware of
the 1541 disk drive will not allow us to directly read sync

(0 marks from the disk. When a sync mark is encountered on the'
disk the bits read will be unreliable until the sync mark has

)(passed. The byte read from the disk will appear to be somewhat
. random. For this reason we should consider 'throwing out' the

byte that represents the sync mark.

But how do we know which byte represents the sync mark? The
problem is easily solved, since we know that a header
identifier byte follows the sync. We must find an $08, which
translates into 10 bit code (using the GCR values for 0 and 8)
as: 01010 01001 since 0=01010 and 8=01001. A careful
examination of the binary pattern above will find that this
pattern exists starting with the 9th bit. This is marked with
underlining. Ih essence if we just 'throw out' the byte that
represents the sync mark we may directly interpret the GCR
code. In our example the GCR code for the header begins at the
9th bit. Starting here we must now translate each group of 5
GCR bits back into a 4-bit hex digit. If we group the above
pattern of binary digits in groups of five, starting with the
ninth bit, we get:

PPMII GCR RECORDING PAGE 108

01010 01001 10011 11010 01010 01101 10010 10011

0 8 3 A 0 C 2 3

01110 11101 01111 01001 01010 10101 01010 10101
4 0 5 8 0 F 0 F

Looking these values up in the GCR table reveals the true
identity of this block. We get:

o 8 3 A o C 2 3 4 0 5 8 o F o F

Letls interpret these eight values: 1) $08 is the header block
10; 2) $3A is the header block checksum; 3) $OC is the sector
number, in this case sector 12 since $OC = 12 decimal; 4) $23
is the track number, in this case 35 since $23 = 35 decimal; 5)
$40 is 102, which is an ASCII IM I ; 6) $58 is 101, which is IXI;
and 7-8) Finally we have our two OF Ipadding bytes'. We have
decoded the GCR header!!

You will notice that in the original GCR data in figure GCR-2
there are ten 55 bytes following the 95 byte. These are not all
to be interpreted as Iheader gapl bytes. If you look closely,
you will see that we have lused up· two of the 55 1 s which
followed the 95 in order to get our two OF bytes. This leaves
exactly 8 55·s left to account for. These are the gap bytes
welre expecting.

Note: DOS does not translate either sync bytes or gap bytes Q
when they are written to the disk. Thus, sync bytes are
actually long strings of binary 1 IS and gap bytes remain $55 .
(binary %01010101). During the read mode sync bytes are not
shown directly, although we will see a few remnants where the
sync bytes should be.

Letls proceed to line 5010 in the example. In the middle of the
line we see an FF then a 55 D4 AS 29 etc. The FF corresponds to
our sync mark for the data block. It is in this area that we
should be able to find the data block 10 ($07). Let's see if
the decoding process makes sense.

Write out the 8-bit binary for these hex codes.

F F 5 5 0 4 A 5 2 9
1111 1111 0101 0101 1101 0100 1010 0101 0010 1001

We are looking for the ten bit pattern for 07 which is 01010
10111. This is found immediately after the 8 binary 1 IS (which
are remnants of the sync mark). Remembering to disregard the
remnants of the sync mark, we should now group the data into
groups of 5 bits each, beginning with 01010 10111. We get:

01010 10111 01010 01010 01010 01010 01010 01010
o 7 0 0 0 0 0 0

p pr~ I I GCR RECORDING PAGE 109

Look up the 5-bit GCR nybb1es in table GCR-1. We find that the
first two nybb1es are 07 as expected. This is followed by 00 00
00. These 00 bytes are the first few data bytes. Evidently this
data block has been filled with all OO's. You can use the
routine you have been provided with to read a sector containing
data. It would be a good exercise to then decode at least the
header and part of the data block for practice with GCR.

Now look at line 5158 in table GCR-2. We see 4A 55 55 55 55 55
55 FF. These 55's are the so-called intersector gap bytes (tail
gap). They give DOS some breathing room between sectors. The
number of these gap bytes varies from track to track and in
fact is not a constant for a given track. Drive speed can
affect how many intersector gap bytes are written during
formatting. The DOS actually calculates how many bytes can be
written to a given track. (This value varies with drive speed.)
It then determines how many byte are required on that track
(based on the number of sectors) and figures how many bytes are
left over to use in the tail gaps. The tail gap bytes provide
an interesting and subtle place to hide a value for protection
purposes. Supposedly the new bit copiers can duplicate these
bytes, though.

After the 55's we see an FF. This is the remnant of the sync
mark which denotes the beginning of the next header block. See
if you can decode the header beginning on line 5140. You can
compare your translation to the one below:

Raw hex bytes: 52 67 B5 76 53 77 5E 95 55

5 2 6 7 8 5 7 6 5 3
0101 0010 0110 0111 1011 0101 0111 0110 0101 0011

7 7 5 E 9 5 5 5
0111 0111 0101 1110 1001 0101 0101 0101

Now group these 4-bit hex nybb1es into 5-bit GCR nybbles.

01010 01001 10011 11011 01010 11101 10010 10011
o 8 3 BOD 2 3

01110 11101 01111 01001 01010 10101
4 D 5 8 0 F

Now translate via the GCR-HEX table. You will find that you
get:

08 3B OD 23 4D 58 OF •••

This makes complete sense. We have our header ID (08) followed
by a new checksum (38). We then find the sector and track
numbers (OD and 23) which translate into decimal as sector 13
and track 35. This makes sense since our last block was track
35 sector 12. We then find ID2 and IDl to be identical to that
found in the last block (4D and 58). Finally we have our
padding bytes (OF's).

PPMII GCR RECORDING PAGE 110

The value of the programs provided can now be appreciated. You
are no longer limited to looking at the data block with a track
and sector editor. You can now look at 1000 bytes of raw data.
Nothing can be hidden from your view. You see the gap bytes.
You can compare your copy disk against the original right down
to the last bitll Any difference may be used to distinguish
your copy from the original by the protection scheme.

If you wish to investigate a track at the GCR level you should (20/\
run the program 'GCR READ I from the program disk. You will be
p~ompted for a tr~ck number. The.routine will syn:-up (meaning .
11ne-up) on the flrst sync mark lt comes to. It wl11 then read .
the next 1024 bytes into the disk drivels memory starting at
$0400 and ending at $07FF. This memory can be transferred to
the computerls memory and then dumped to the printer in
hex/ASCII by your ML monitor. You will end up with a listing
similar to that shown in table GCR-2. You can then translate
the headers, looking for any funny business. Since the sector
you sync-up on is random, you will have to repeat this process
discarding the duplicates until all sectors have been read in
and printed. You will then be able to go to work determining
what exactly is going on in the area of copy protection.

In the older protection schemes you will find only errors in
the header:

Error 20 indicates that the header cannot be found, i.e., the
$08 identifier is missing.

Error 21 indicates that no sync
certain time (20 ms).

mark was found within a

Error 22 indicates data block
found).

not present (i.e. no $07 was

Error 23 indicates a checksum error in the data block. (Note:
If you need to put an error 23 on a copy disk to
make it work, you may need to use the same checksum
as that on the original. It is possible for the
protection scheme to verify not just an error 23,
but an error 23 with a particular checksum. Also,
don't forget that the scheme may also use the data
in the block.

Error 27	 indicates an error in the header checksum. Again, a
particular checksum value may be required and the
other header information is potentially usable.

Error 29	 indicates a disk 10 mismatch. This means that the
two IDs found in the particular sector do not match
the lOis that exist at track 18 sector O.

Artificially inducing errors 20, 21, 22, 23, 27 and 29 and then
checking for them is the basis of what we have been calling the
101d style' of protection. Two problems exist with these types
of protection methods:

PPMII	 GCR RECORDING PAGE 111

1).	 Reading most of these errors causes the 1541's stepper
motor to beat up against its end stop. As we all know, the
beating of the drive takes during the 'bump' is largely
responsible for the many drives which are going out of
alignment. This method of protection is unacceptable for
this reason.

2).	 This method of protection no longer really provides any
real protection. There are many copy utilities, both
commercial and public domain, which can be used to put
these errors onto a copy disk. There are even programs
like Omni Clone which automatically reproduce these errors
as they copy. The proliferation of these copy programs
makes 'bad blocks' an ineffective method of protection.

The latest protection methods are far more sophisticated and
often deal with extra sectors, displaced sectors, extra gap
bytes, displaced track numbers, changes in density and other
ways of creating disks which contain a unique pattern that can
be tested for but not easily reproduced. Let's look at a few
specifics on these methods

DISPLACED SECTORS: Also known as non-standard sectors. You may
discover, as you investigate the header information of a
particular track, that the sectors are not in proper order or
that some sectors have been duplicated. In our example above we
found that the first sector was sector 12 of track 35. The
sector following was sector 13 of track 35. On a normally
formatted track, the sectors are in order from 0 to the maximum
for that track, so any deviation from this is abnormal.
Displaced sectors may be used as a method of copy protection by
having the program check for the displaced sectors.

EXTRA SECTORS: Tracks 18-24 normally contain 19 sectors
numbered from 0 to 18. If you find a sector numbered 19 on
tracks in this range, you have discovered that the protection
scheme involves extra sectors. If the number of gap bytes are
reduced it is possible to put an extra sector on these tracks
only.

DISPLACED TRACK NUMBERS: Sophisticated protection schemes may
involve formatting a track with sectors whose headers contain
an incorrect track number. Electronic Arts has done this on
track 35. If you run your GCR reading program on track 35 of an
unbroken EA disk you will find that the track numbers are 34!

GAP BYTES: On a normally-formatted track there are eight (8)
gap bytes ($55) separating the header from the data block. It
is possible using a modified drive or special software to
change this number or to use a character other than $55. This
condition is not easily created and forms the basis for newer
forms of protection.

PPMII	 GCR RECORDING PAGE 112

The above methods just scratch the surface of the newer
protection schemes and will be dealt with at greater length
elsewhere in the book. There is, however, another method of
protection which will be discussed at length in this chapter.
This method is perhaps the most difficult to reproduce with a
copy program. It involves altered bit densities.

On the earlier pages of this chapter we int~oduced the concept
of 'bit density' or the number of bits/second which are clocked
out on a particular track. It was explained there that the
number of bits/sec is greatest on the outer tracks (1-17) where
the surface of the disk is moving at the greatest speed. Points
farther from the center move on circles of greater
circumference. Thus points farther from the center move a
greater distance in the same time. (By the way, one revolution
takes 1/5 of a second = 200 ms.)

Bits are clocked out at four different speeds depending on
which track is being written to. Below is a table of clock
rates:

Tracks Clock Rate Divisor Bits

1 -1 7
18-24
25-30
31-40

307,692 b/s
285,714 b/s
266,667 b/s
250,000 b/s

13
14
15
16

11
10
01
00

The various rates are achieved by dividing the 16 MHz clock
rate by 13, 14, 15 and 16 respectively. Then the value obtained
is divided by 4. This, in turn, is the actual clock rate used.
The number of bits per inch varies from track to track with the
largest number on the inner tracks since their circumferences
are very small. The reason the clock rate must be slowed from
its 16 MHz frequency is so that the bits don't get too close
together. A blurring effect takes place if the magnetic domains
are too close to each other.

Density may be changed simply by changing setting (1) or
clearing (0) two bits at memory location $lCOO in the disk
drive. Bits 5 and 6 of memory location $lCOO (which is part of
the 6522 Disk Controller VIA) control the density with which
bits are read and written. The four possible states of these
two bits (00,01,10,11) correspond to the four densities as
shown above. You will find as you read further into this book
that $lCOO is an extremely important location in the disk
drive. The bit pattern at that location not only controls the
density but also controls the turning-on of the motor and the
cycling of the read head in half-track increments. Methods of
moving the head in half-track increments are discussed
elsewhere.

PPMII GCR RECORDING PAGE 113

,___
;'X.~,

." " ~

Under normal circumstances the DOS will select the proper
values for bits 5 and 6 from a look-up table to ensure that
data is written at the proper density. The bit pattern for
tracks 1-17 is 11, tracks 18-24 is 10, tracks 19-30 is 01 and
tracks 31-35 use 00. What if we decide to take control of $lCOO
and write data to track 1 using a different density? Since this
is normally written at the highest density we would be writing
less bits per second than normal. The distance between 'bits'
would be greater. If a copy program is unaware that the track
is written at a nonstandard (wrong) density, it will not be
reading the track at the right density. i.e. the clock will
still be clocking bits at 307,692 bits/second. What will
happen? It should be clear from our earlier discussion on how
information is recorded on the disk that reading at the wrong
clock rate will simply makes the information appear to be
garbage. There is no way the copy program can 'know' the clock
rate that was used to create the information on the track. It
will read it at the wrong density and write a lot of garbage on
the copy disk. The copy disk will not pass the copy protection
scheme under these circumstances.

The problem can be compounded greatly by using all four
densities on one track!! Now the copy program must figure out
WHERE the density changes occur in order to duplicate the
track. If the information on the track follows the normal
format, i.e., a sync mark followed by an $08, followed by a
he ad ere t c ., the copy program c0 u1d con cei vab1y fig ureout
where the density changes take place by trial and error,
knOWing what it should find. If, however, the information on
the track is simply a pattern of bytes known only to the
creators of the protection scheme, it is going to be very
difficult (impossible?) for a copy program to figure out
exactly where the density changes occur. It seems that a
foolproof protection scheme can be created which finds a single
sync mark and then reads a fixed number of bytes. It then
changes the density and reads another fixed number of bytes. It
could keep doing this, changing the density many times. The
protection scheme knows where the density changes took place
and so it can read back a predictable pattern of bytes. There
is virtually no way a copy program can duplicate this disk
since there is very little chance of finding where the density
has been changed by trying to read the disk.

You have tools which allow you to examine a track on the bit
level. They are not powerful enough to account for density
changes. Here is an important point: Once the protection
schemes become sophisticated enough, copy programs will no
longer work. The only way left to get a copy of the program
will be to 'break' the protection scheme, i.e., alter the
program so that it runs without examining the disk for special
'finger prints'. If the protection check is made only once at
the start, as is common now, it is also possible to lift a
working copy of the program from the memory of the computer
after it has passed its protection test. Other chapters in the
book deal with these topics.

PPMII GCR RECORDING PAGE 114

A FEW

DEC

000

001

002

003

004

006

008

010

012

014

018

020

022

024

026

048

057

058

061

063

067

071

074

081

PPMII

SELECTED

HEX

$00

$01

$02

$03

$04

$06-$07

$08-$09

$OA-$OB

SOC-SOD

$OE-$OF

$12-$13

$14-$15

$16-$17

$18-$19

$lA

$30-$31

$39

$3A

$3D

$3F

$43

$47

$4A

$51

DISK DRIVE MEMORY LOCATIONS

FUNCTION

COMMAND CODE FOR BUFFER 0

COMMAND CODE FOR BUFFER 1

COMMAND CODE FOR BUFFER 2

COMMAND CODE FOR BUFFER 3

COMMAND CODE FOR BUFFER 4

TRACK AND SECTOR FOR BUFFER 0

TRACK AND SECTOR FOR BUFFER 1

TRACK AND SECTOR FOR BUFFER 2

TRACK AND SECTOR FOR BUFFER 3

TRACK AND SECTOR FOR BUFFER 4

ID FOR DRIVE 0

ID FOR DRIVE 1 UNUSED

ID FROM HEADER

TRACK AND SECTOR

CHECKSUM

BUFFER POINTER FOR DISK CONTROLLER

CONSTANT 8, MARK FOR BEGINNING OF DATA BLOCK HEADER

PARITY FOR DATA BUFFER

DRIVE NUMBER FOR DISK CONTROLLER

BUFFER NUMBER FOR DISK CONTROLLER

NUMBER OF SECTORS PER TRACK FOR FORMATTING

CONSTANT 7, MARK FOR BEGINNING OF DATA BLOCK HEADER

STEP COUNTER FOR HEAD TRANSPORT

ACTUAL TRACK NUMBER FOR FORMATTING

GCR RECORDING PAGE 115

TJAf:;LE &Cr~' 2-]~--,--,-_._~_. ~
-'--,"

5000 lEA) 52 67' A5 36 53 77 5E IRg·.j.·65w·-' ~and header

5008 95 55 55 @5 55 55 55 55 • UUUUUUU gap bytes
5010 55 55 55 FF 55 D4 A5 29 UUUU¢~) gap bytes, data ~ and data block1
5018 4A 52 94 A5 29 4A 52 94 JR.~)JR. idata block
5020 A5 29 4A 52 94 A5 29 4A ~)JR.~)J

5028 52 94 A5 29 4A 52 94 A5 R.~)JR.~

5030 29 4A 52 94 A5 29 4A 52) JR. 4') JR
5038 94 A5 29 4A 52 94 A5 29 .~)JR.~)

5040 4A 52 94 A5 29 4A 52 94 JR.~)JR.
5048 A5 29 4A 52 94 A5 29 4A ~)JR.~)J

5050 52 94 A5 29 4A 52 94 A5 R.~)JR.~

5058 29 4A 52 94 A5 29 4A 52)JR.~)JR

5060 94 A5 29 4A 52 ~4 A5 29 .~)JR.~)
5068 4A 52 94 A5 29 4A 52 94 JR.~)JR.

5070 A5 29 4A 52 94 A5 29 4A ~)JR.~)J

5078 52 94 A5 29 4A 52 94 A5 R.~)JR.~

5080 29 4A 52 94 A5 29 4A 52)JR.~)JR
5088 94 A5 29 4A 52 94 A5 29 .,.j.·)JR.·.j.·)
5090 4A.52 94 A5 29 4A 52 94 JR.~)JR.
5098 'A'S 29 4A 52 94 A5 29 4A 4') JR ...j..) J
50AO 52 94 A5 29 4A,52 94 A5 R.~)JR.~

50A8 29 4A 52 94 AS 29 4A 52)JR.~)JR

50BO 94 A5 29 4A 52 94 A5 29 .~)JR.~)
50B8 4A 52 94 A5 29 4A 52 94 JR.~)JR.

50CO A5 ~9 4A 52 94 A5 29 4A ~)JR.~)J

50C8 52 94 A529 4A 52 94 A5 R.~)JR.~
5000 29 4A 52 94 A5 29 4A 52)JR.~)JR

5008 94 A5 29 4A 52 94 A5 29 .~)JR.~)
50EO 4A 52 94 A5 29 4A 52 94 JR.~)JR.
SOE8 A5 29 4A 52 94 A5 29 4A ~)JR.~)J
SOFO 52 94 A5 29 4A 52 94 A5 R.~)JR.~
50F8 29 4A 52 94 A5 29 4A 52)JR.~)JR
5100 94 A5 29 4A52 94 A5" 29 .~)JR.~)
5108 4A 52 94 A5 29 4A 52 94 JR.~)JR.
5110 A5 29 4A 52 94 A5 29 4A ~)JR.~)J
5118 52 94 AS 29 4A 52 94 A5 R.~)JR.~
5120 29 4A 52 94 A5 29 4A 52)JR.~)JR
5128 94 A5 29 4A 52 94 AS.29 .~)JR.~)
5130 4A 52 94 A5:'29 4A 52::'.94,JR...j..)JR.
5138 A5 29 4A 529~ A5 29 4A ~)JR.~)J
5140 52 94 A5 29 4A'~2 94 A5 R.~)JR.~
5148 29 4A 52 94 A5 29 4A 52)JR.~)JR
5150 94 A5 29 4A 52 94 A5 29 .~)JR.~) lend of data block
5158 4A 55 5S 55 55 55 55J9Fl JUUUUUU tail gap bytes and header~
5160 52 67 B5 76 53 77 5E 5 Rg~vSWA. header block
5168 55 55 55 55 55 55 55 55 UUUUUUUU gap bytes
5170 55 A5 29 4A UUUlt ..j.,)J gap bytes, data~ and data block
5178 52 94 ~ 29 4A 52 94 A5 R.~)JR.~ Idata block
5180 29 4A 52 94 A5 29 4A 52)JR.~)JR
5188 94 A3 29 4A 52 94 A5 29 .~)JR.~)
5190 4A 52 94 A5 29 4A 52 94 JR.~)JR.
5198 A5 29 4A 52 94 A5 29 4A ~)JR.~)J
51AO 52 94 A5 29 4A 52 94 A5 R.~)JR.~
51A8 29 4A 52 94 A5 29 4A 52)JR.~)JR
5190 94 A5 29 4A 52 94 A5 29 .~)JR.~)
51B8 4A 52 94 A5 29 4A 52 94 JR.~)JR.

55'£;/55 D4

.

PPMII GCR RECORDING PAGE 116

READING GCR

In the last chapter the GCR coding was explained. You have now
used the program 'GCR READ ' in conjunction with your monitor to
read Irawl information from a disk. In this chapter we will
explain how the program works and how you can modify it to
further explore the workings of the 1541 disk drive. One
important item should be mentioned here: in the next chapter
you will be introduced to a more powerful and easier to use
tool. This tool is called DRVMO~64 by STARPOINT SOFTWARE (the
DISECTOR people). If you have this program you will find the
next chapter more enlightening.

As you can see from the program listing below, 'GCR READ'
prompts you for the track number (1-40). It is not a good idea
to try to go past track 40 or even 38 since part of the reading
head may ride up on a screw head inside the disk drive and jam
the reading head.· If you suspect that this has happened, you
will have to take the plastic cover off the drive, physically
move the head backwards a bit and initialize the drive (or try
a direct BUMP as explained below - ouch!). Next you are asked
how many blocks of GCR data you wish to transfer (1 thru 4
blocks) to the computer. The machine code which is loaded in
the disk drive always reads four blocks of GCR code into the
disk drive RAM (from $0400 to $07FF). But since it takes a fair
amount of time to transfer the data to the C-64 so you can view
it, you may want to respond with a 11 I here to avoid a long
wait.

Now the program goes to work. First we open the command channel
and initialize the drive (line 50). We then read in the machine
language from DATA statements and write the DOS routine into
disk drive memory starting at $0300. (The proper syntax of the
M-W (MEMORY-WRITE) command is as follows:
PRINT#15, 1M-W I CHR$(L) CHR$(H) CHR$(N) CHR$(V) - here Land H
are the LO and HI bytes respectively of the address in the disk
drive memory we wish to write to. N is the number of bytes, in
our case 1. V is the decimal value we wish to write to that
address.) That is the purpose of lines 100-120.

Now we get to the interesting part. Before explaining what is
going on at lines 160-180 we will have to explain some of the
details of the operation of the 1541 disk drive.

A memory map of the disk drive would show that zero-page
addresses are very important to its operation, just as they are
in the C-64. Address $0000 to $0005 are used to queue up (line
up) jobs in the disk drive. The interrupt cycle in the disk
drive (or rather the disk controller) scans these memory
locations. If it finds that one of them contains a special
value (discussed below) things begin to happen.

PPMII READING GCR PAGE 117

Location $0000 uses buffer #0 located at $0300 for data storage
and uses locations $0006 and $0007 for its track and sector
numbers respectively. Similarly $0001 uses buffer #1 at $0400
for data and uses $0008 and $0009 for its track and sector.
Likewise for $0002 - $0004. For our present experiments we will
use only
$0006 and
Below is

buffer #0. Thus $0000 will contain
$0007 will contain our track and

a table of the valid job codes:

our
sect

ljob code l
or referen

and
ces.

JOB CODE DESCRIPTION

$80
$90
$AO
$BO
$CO
$DO
$EO

READ
WRITE
VERIFY
SEEK
BUMP
JUMP
EXECUTE

When the disk controller finds one of these codes in $0000 (or
$0001 - $0004) it will look to $0006 and $0007 for track and

,sector references (if needed) and then carry out the job
request. In our program you can see that we are putting the
track input at line 10 into location $0006. Then at line 180 we
put a $EO (224) into address $0000. The $EO is a very powerful
instruction which causes a ljob queue execute l of the ML
program stored in buffer #0 (at $0300). What happens is this:
The disk is brought up to speed, then the head is moved to the
track specified. The drive takes care of all the complications
entailed in moving the head to that position, e.g. accelerating
and decelerating the head, calculating the number of half steps
etc. Once the read/write head has reached the specified track,
the ML code in buffer #0, location $0300 is executed (a
disassembly of that code follows the BASIC program listing).
The code we have placed there causes the drive to: 1} find a
sync mark and 2} read 1K (4 256-byte blocks) of GCR data into
the disk drive RAM starting at $0400. The routine will end
through a RTS instruction. Thus t when the routine in buffer #0
has finished t the disk drive memory contains 1K of GCR code.
Lines 250-310 transfer 1 t 2,3 or 4 blocks of that code via the
M-R instruction to address $5000 in the C-64 memory so that we
can examine it with a machine language monitor.

One other bit of useful information is transferred. Lines
200-220 transfer a copy of address $0000 from the disk drive
and display it on the screen calling it 'JOB STATUS' (error
code). The job queue execute command will leave a value at
address $0000 when it is finished, telling us if any errors
have occurred. These values are catalogued below:

PPMII READING GCR PAGE 118

ERROR CODE MEANING

$01 O.K. (no error)

$02 Header block not found (20)

$03 No sync character found (21)

$04 Data block not present (22)

$05 Checksum error in data block (23)

$07 Write verify error (25)

$08 Write protect on (26)

$09 Checksum error in hdr (27)

SOB Disk 10 mismatch (29)

Note that if you add 18 to the decimal value of the error code
you will get the regular disk error number. The method employed
by our DOS routine will normally leave a $04 as the job status.
This is acceptable due to the way that internal DOS of 1541
handles error reporting. If you try to read information from a
track past track 35, you may find a $03 as the job status. This
means that no sync mark was detected. This is because those
tracks are not normally formatted and do not normally have sync
marks. If you get a $04 or $00 as the job status when reading
past track 35, you have discovered that there is at least a
sync mark on the track in question and maybe data. An
examination of the contents of memory from $5000 to $5400 in
the computer will reveal the nature of the information
contained on the track in question. Since 'normal' disks
contain no information beyond track 35, you may find that some
of the newer protection schemes are putting data on track 36 or
37. Some of the newer copy programs (DiskMaker etc.) will copy
the data contained on tracks beyond 35.

GCR READ is a versatile program in that you can easily modify
it to do other things by changing the 224 in line 180 to a
different job code. Using 176 ($BO), for example, will do a
sector seek (fill in the sector number at the end of line 170)

If you get a memory map of the 1541 (Try 'The Anatomy of the
1541 1 from ABACUS or 'Inside Commodore DOS ' from Datamost) you
can learn to write your own DOS routines. You can test them by
putting your code into the DATA statements from 320-460 and
then changing the ending value of the loop in line 90 from 71
to the appropriate value.

Warning: When you are using job queue commands, you are
controlling the disk drive at a very fundamental level. At this
level the drive obeys your commands without doing much (if any)
error checking. You can easily destroy a disk, even one with a
write protect tab in place!! When you are testing your
routines, always use an old disk or one for which you have a
copy.

PPMII READING GCR PAGE 119

The 1541 is a complicated and powerful piece of hardware. We
hope that this brief look at some of its workings has been
enlightening. The newest generation of copy protection schemes
are all going to be based in complex uses of the power of the
1541. The action will be taking place inside the disk drive
where special routines in disk drive RAM are being executed to
make the drive move in half-tracks, or beyond track 35, or to
extra sectors, or at the wrong density ••••• This is where
program protection is headed.

PPMII READING GCR PAGE 120

10 INPUT "[CH]INPUT TRACK NO.";T
20 IF T<OORT>40THEN10
30 INPUT "NUMBER BLOCKS TO TRANSFER."iB
40 IF B<10RB>4THEN30
500PEN15,8,15,"I"
60
70 REM READ ML CODE AND WRITE TO $0300 IN 1541
80
90 FOR 1=0 TO 71
100 READ V
110 PRINT#15,"M-W"CHR$(I)CHR$(3)CHR$(1)CHR$(V)
120 NEXT I
130
140 REM JOB QUE EXECUTE
150
160 PRINT#15,"M-W"CHR$(6)CHR$(0)CHR$(1)CHR$(T)
170 PRINT#15,"M-W"CHR$(7)CHR$(0)CHR$(l)CHR$(0)
180 PRINT#15,"M-W"CHR$(0)CHR$(0)CHR$(1)CHR$(224)
190 FOR I=lT02000:NEXT:REM WAIT
200 PRINT#15,"M-R"CHR$(0)CHR$(0)
210 GET#15,A$:A=ASC(A$+CHR$(0»
220 PRINT"[CD][CD]JOB STATUS ($OO):"iA
230 PRINT "[CD] [CD]PLEASE WAIT-TRANSFERRING DATA FROM 1541 TO $5000"
240 REM DUMP CONTENTS OF $0400 TO $07FF TO $5000
250 FOR I=4*256TO(4+B)*256-1
260 B=INT(I/256):REM HIGH ORDER BYTE
270 L=I-H*256 :REM LOW ORDER BYTE
280 PRINT#15,"M-R"CHR$(L)CHR$(H)
290 GET#15,A$:A=ASC(A$+CHR$(0)
300 POKE(19456+I),A:REM POKE $5000 IN C-64
310 NEXT I
315 REM SYS 49152
320 DATA 169,0,170,169,0
330 DATA 133,48,169,4,133
340 DATA 49,169,3,72,169
350 DATA 20,72,76,86,245
360 DATA 80,254,184,173,1
370 DATA 28,145,48,200,208
380 DATA 245,230,49,232,224
390 DATA 4,208,238,160,186
400 DATA 80,254,184,173,1
410 DATA 28,153,0,1,200
420 DATA 208,244~32,224,248

430 DATA 165,56,197,71,240
440 DATA 5,169,4;76,105
450 DATA 249,32,233,245,76
460 DATA 254,244

PP~lI I READING GCR PAGE 121

CONVERSION TABLE FOR GCR

DECIMAL HEX BINARY

00 00 0000
01 01 0001

02 02 0010
03 03 0011

04 04 0100
05 05 0101

06 06 0110
07 07 0111

08 08 1000
09 09 1001

10 OA 1010
11 OB 1011

12 OC 11 00
13 00 1101

14 OE 1110
15 OF 1111

GCR

01010
01011

10010
10011

01110
011 11

1011 0
1011 1

01001
11001

11010
1101 1

01101
11101

11110
10101

HEX

00

01

02

03

04

05

06

07

08

09

OA

OB

OC

00

OE

OF

DECIMAL

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

PPM I I READING GCR PAGE 122

WORKING 'INSIDE' THE DISK DRIVE

In order to work inside the disk drive, it will be necessary to
understand how to use an 'essential' tool. The tool that we are
speaking of is called 'DRVMON64' by STARPOINT SOFTWARE
DI-SECTOR people). DRVMON64 is probably the most powerful
available for working inside the disk drive. DRVMON64 is
one of the most overlooked tools around. DRVMON64

(the
tool
also

is
copyrighted by STARPOINT SOFTWARE and contained on the
DI-SECTOR disk. One interesting fact about this program is that
it is not copy protected.

Two other items that you should have in your 'tool kit' are the
books INSIDE COMMODORE DOS by Richard Immers and Gerald Nuefeld
and THE ANATOMY OF THE 1541 DISK DRIVE by Abacus. With these
two books and DRVMON64 there is virtually nothing that cannot
be accomplished inside the 1541. INSIDE COMMODORE DOS is an
excellent book, well written, easy to understand and by far the
most comprehensive book on the disk drive.

HOW TO USE DRVMON64

DRVMON64 is a ML monitor that will work equally well in the
disk drive or the computer. It is possible to transfer data
between the disk drive and the computer. It is possible to
assemble or disassemble code in the computer or directly in the
drive's memory. As a matter of fact, all of the ML monitor
functions that are available in the computer are available in
the drive with DRVMON64.

If you don't currently have a copy of the DRVMON64 we would
strongly suggest that you obtain one (directly from STARPOINT
SOFTWARE, STAR ROUTE 10, GAZELLE, CA. 96034). Since it is a
copyrighted program we cannot supply you with a copy of it. If
you already own DRVMON64 we suggest that you get out your copy
of the DI-SECTOR manual and read the DRVMON64 instructions
before proceeding any further. If you don't currently own a
copy DRVMON64, read this chapter anyway. You will still get a
lot out of it. Use the program called 'GCR READ' from the last
chapter, making the appropriate changes in the BASIC program.

Load and execute the version of DRVMON64 that resides at 49152
($eOOO). This the version of the program that we will use for
our discussion. When DRVMON64 is first executed the monitor
will be working in the computer's memory. To use the monitor in
the disk drive simply type 08 (0 the letter, not 0 the number)
then RETURN. You will notice that there is a ']' (bracket sign)
next to the cursor. This indicates that you are in the disk
drive's memory. Let's try some real easy commands. Type 'M 0000
003F' (RETURN). The code that you see is the actual code from
the disk drive's memory starting at $0000 and ending at $003F.
You may also use the other commands (A, 0, F, G, etc.) when you
are in the disk drive.· Try the following command '0 FCAA'
(RETURN). You will now see a portion of the ROM memory

PPM I I WORKING 'INSIDE' THE DISK DRIVE PAGE 123

disassembled. DRVMON64 is fast t it is easy to use and it is
probably the best tool for examining the disk drive's memory.

For now we will concentrate on one area of the drive's memorYt
the job command queue #0 located at $0000 and the track and
sector for buffer #0 located at $0006 (track) and $0007
(sector). The disk drive will use these locations to perform
many of its tasks. When the disk drive reads a block of data
from the disk it will use the job command queue located at
$0000 to perform this function. This location is checked by the
disk drive through its interrupt routine (IRQ). If a routine is
going to use the job command queue it is essential that the
Interrupt flag be clear (0). If the proper value (command code)
is stored at location $0000 the drive will execute the function
that corresponds to the command code. Following is a table that
describes the command codes and their meanings. All values are
in hex:

80 READ A SECTOR
90 WRITE A SECTOR
AO VERIFY A SECTOR
BO SEEK A TRACK (ANY SECTOR)
B8 SEEK A TRACK & SECTOR
CO BUMP - FIND TRACK 1
DO JUMP TO ML PROGRAM IN BUFFER
EO EXECUTE CODE IN BUFFER - FIRST THE

DRIVE WILL BRING THE DISK UP TO SPEED
SET THE DENSITY TO THE PROPER VALUE
AND SEEK THE PROPER TRACK. THEN THE
CODE IN THE BUFFER WILL BE EXECUTED.

The track and sector number should be stored at locations $0006
and $0007 respectively BEFORE storing the command code at
location $0000. When we use DRVMON64 it is possible to set all
the values at the same time and let the program do the rest for
us. So much for theorYt let's have some fun! Format a disk and
leave it in the disk drive. This way we can have something to
work with. Do not experiment with a valuable disk. We will use
the M command of DRVMON64 to perform the following experiments.
For the sake of clarity it may help to remove the cover of the
disk drive and the metal shield covering the circuit board.
This will enable you to see the actual results (of the R/W
head) that we are going to obtain. Type in the following lines
directly next to the] (bracket sign).

]@I (RETURN)

This will initialize the disk drive. DRVMON64 also contains a
built in DOS wedge. Now type in the following line. Don't add
any extra spaces or data to this line.

PPMII WORKING 'INSIDE' THE DISK DRIVE PAGE 124

]F 0300 03FF 00 (RETURN)

This command will fill data buffer 0 (located from $0300 to
$03FF) with OD's. This gives us a fresh work space. Next type
in the following line.

]:0000 80 00 00 00 00 00 01 05 (RETURN)

Let's examine the above line. The $80 (at location $0000)
specifies read a block. The $01 (at location $0006) specifies
the track number. The $05 (at location $0007) specifies the
sector number. If everything went as expected the drive will
come to life~ the disk will start spinning~ the head will move
and track 1 ~ sector 05 will be read into buffer 0 (located from
$0300 to $03FF). Before we examine the code from $0300 to $03FF
let's be sure that the drive was able to properly read the
data. To do this it will be necessary to examine the job
command queue for an error message. After a command is
processed by the drive~ the DOS will store an error code back
in the command code queue. The error codes are interpreted as
follows:

01 NO ERROR - JOB COMPLETED
02 HEADER BLOCK NOT FOUND
03 SYNC NOT FOUND
04 DATA BLOCK NOT FOUND
05 DATA BLOCK CHECKSUM ERROR
07
08

VERIFY ERROR (AFTER WRITE)
WRITE PROTECT ERROR DURING WRITE

09 HEADER BLOCK CHECKSUM ERROR
OA DATA BLOCK TOO LONG
DB ID MISMATCH ERROR
10 BYTE DECODING ERROR

Type 1M 0000
the contents
was no error

0007' (RETURN). We will now be able to examine
of location $0000 for the error message. If there
the value of $01 will be contained at location

$0000. If any other value is contained there~ repeat the
procedure starting with the I@II command. Use the IM I command
to examine memory from $0300 to $03FF. This is the area of
memory that contains the data block that was read.

Now that you can read a normal data block into memory let's go
a little farther. Just by substituting a $90 at location $0000
we can write the data at $0300-$03FF out to any sector. Try
using the other commands to Verify. Seek or Bump. One word of
caution though; if you use the JUMP or EXECUTE commands be sure
that there is a valid ML routine at location $0300. If you
don't have a valid r~L routine located there the disk drive may
lock up. A power-off or a RESET will be required to restore
your drive to normal.

It is not necessary to use a valid track or sector number at
memory locations $0006 & $0007. Try repeating the above
procedure with a track number of $24 (decimal 36). It is

PPMII WORKING 'INSIDE' THE DISK DRIVE PAGE 125

possible to move the head to any track on the disk (1 to 40)
and read data from the disk. The data that will be read must
have been written in the standard 1541 format. Otherwise an

f~' error will be returned and the data read will not be valid. It
(~\1 is interesting to note that the head will not BUMP I whenI'\j)' I errors are encountered when us; n the lob command ueue to

J mman ry removlng your disk and execute the
rea command. T e ead will not BUMP when an error is
encountered if we are directly executing the command through
the job command queue.

Warning: When you are directly using job queue commands, you
are controlling the disk drive at a very fundamental level. At
this level the drive obeys your commands without doing much (if
any) error checking. You can easily wipe out a disk. even if
the write protect is covered!! When you are testing your
routines always use an old disk or one which you have a copy
of.

If you wish to use the EXECUTE command, it will be necessary to
write your own ML read and write routines. With the use of
these routines it is possible to read and write data to the
disk ANYWHERE from track 1/2 to track 40 1/2.

One other very interesting area in the disk drive's memory is
the disk controller port B, location $lCOO. Memory location
$lCOO is where we can control the stepper motor, the drive
motor and the density selection. Each bit of the byte at
location $lCOO has a special function (lo~ation $lCOO is the
disk controller I/O port). Following is a table that
illustrates the function of each bit

BIT VALUE FUNCTION
o $01 BITS 0 & 1 ARE CYCLED TO STEP
1 $02 (MOVE) THE HEAD IN AND OUT
2 $04 MOTOR ON AND OFF (1 BIT IS ON)
3 $08 DRIVE BUSY LED (LIGHT)
4 $10 WRITE PROTECT DETECT
5 $20 DENSITY SELECT
6 $40 DENSITY SELECT
7 $80 SYNC DETECT

Let's just try another little experiment. We will be changing
the values contained at location $lCOO. Be sure that the cover
is removed from your drive so that you may see the half
tracking. Initialize your drive (@I) then type in the following
line from DRVMON64. Be sure you are working in the drivels
memory (]).

]M'lCOO lC07 (RETURN)

You will see that the value contained a location $lCOO is a $02
(binary %1101 0010). Examining the binary value we can see that
bit 2 contains a O. This means that the drive motor is off
(remember bits are numbered from 0-7). If we want to turn on

PPMII WORKING 'INSIDE ' THE DISK DRIVE PAGE 126

the drive motor all we have to do is set bit 2 to the value of
1. This will result in the binary value of % 1101 0110 (hex
$06). To store the value of $06 in memory location $lCOO use
the following command.

]:lCOO 06 (RETURN)

The drive motor will come on and disk will spin. The disk will
continue to spin as long as bit number 2 of $lCOO is set to a
value of 1 (HEX $06 = BINARY % 1101 0110). To turn the motor
off move the cursor up to the $06 and change it to the value of
$02 (then press RETURN). The motor will turn off. In order to
move the head in half tracks it will be necessary to cycle the
o & 1 bits in the following fashion. First initialize the drive
(@I). Then use the following command:

]:lCOO 06 (RETURN)

Move the cursor back up to the $06 and change the value to $07,
then $04, then $05, then $06, then $07, then $04, then $05,
then $06, etc. (be sure to omit the 1$1 when storing the values
to memory). To move the head in half tracks all we are really
doing is cycling bits 0 & 1 of location $lCOO. Use the
following sequence of bit values 00, 01, 10, 11, 00, 01, 10,
11, etc. Start with the appropriate bit pattern (10) and cycle
through the others. Change only those bits that directly affect
the location of the head (bits 0 & 1). The first $06 will just
turn the drive motor on, the $07 will move the head 1/2 track
in, the $04 will again move the head 1/2 track in, etc. If you
were to analyze the bit pattern used at location $lCOO it will
become apparent that all we are doing is cycling bits 0 & 1 to
move the head. Conversely, if we wish to move the head out from
track 18, we would do the following. Initialize the drive (@I)
so that we start with the head at track 18. Type in the
following:

]:lCOO 06 (RETURN)

This $06 will turn on the drive. Then move the cursor back up
to the $06 and change the value to $05, then $04, then $07,
then $06, then $D5, then $D4, then $07, then $D6, etc. In order
to move the head in the opposite direction all we have to do is
cycle bits 0 & 1 in the reverse order. In the above example we
directly changed (cycled) the bits in location by storing the
proper values at location $lCOO. You will find that more
experienced programmers will cycle the bits by ANDing and
ORAing the bits of location $lCOO. It is not important how the
cycling of bits takes place (directly storing values or by AND
& ORA). What is important is that the bit pattern at location
$lCOO is cycled in the proper sequence.

PPMII WORKING 'INSIDE' THE DISK DRIVE PAGE 127

Two other bits of location $lCOO are important to us when we
are working in the disk drive. These are bits 5 and 6 of
location $lCOD. Bits 5 and 6 control the density at which data
will be read from or written to the disk. The following chart
reflects the density selections available on the 1541.

BIT 6 BIT 5 TRACKS

1 1 1 - 17

1 o 18 - 24

o 1 25 - 30

o o 31 - 35

In order to read data from a track written at the normal
density, bits 5 & 6 must be set properly. If data is read from
the disk at the wrong density the data will appear to be
garbage. If you are going to move the head yourself (by cycling
bits 0 & 1) be sure to set the density to the proper value
prior to reading or writing from the disk.

The next locations that we will cover in this chapter are
location $lC01 (data port A) and location $lC03 (data direction
for port A). Location $lC01 is the data port for GCR data
transfer to and from (I/O) the disk. Location $lC03 is the data
direction port for location $lC01. This location controls
whether we will read data from or write data to the disk.
Storing a value of $FF at location $lC03 will allow data to be
written to port A (location $lC01); this will turn on the write
mode of port A. Storing a value of $00 at location $lC03 will
allow us to read data from port A (location $lC01); this will
turn on the read mode of port A.

Before we may actually write to the disk one more area of the
disk drive must be explained. This is the Peripheral Control
Register (PCR) located at $lCOC. The PCR is used to change the
Read/Write (R/W) Head from the read mode to the write mode. Bit
5 of the PCR is used to control the mode of the R/W head. When
bit 5 of location $lCDC is set to a value of 1 the drive will
be in the read mode. When bit 5 is cleared (0) the R/W head
will be in the Write mode. Always set this location to the
desired mode prior to selecting location $lC03. After every
normal DOS routine this location is set to read.

The internal DOS of the disk drive will take care of cycling
the bits to move the head, set the density during normal
operation, set the PCR to the proper mode and set the data
direction port. The DOS will also perform the actions faster
and more accurately than we can with our crude little
experiment here. We hope that you have learned a little about
the inner workings of the disk drive. Don't be afraid to
experiment; try moving the head to various tracks. If you go
too far the drive may have to be initialized. Just don't
perform too many 'BUMPS' and you should not experience any
problems. Be sure to remove the cover of your drive so that you
may see the Read/Write head move to these 'exotic' locations.

PPtH I WORKING 'INSIDE' THE DISK DRIVE PAGE 128

Time for review! We have covered a lot of material here. Let's
take a short break and recap what you have learned.

1).	 The command queue is checked by the IRQ routine of the disk
drive. When a valid command code is stored in the queue,
the appropriate function will be executed. Since the
command queue uses the IRQ to process its commands the
Interrupt flag of the drive must be clear in order to
function. When a programmer directly uses the job command
queue the head will not 'bump' if an error is encountered.

2).	 Memory location $lCOO is primarily used to control the
stepper motor, the drives motor and to select the proper
density.

3).	 Location $lCOl (data port A) is used to read data from or
write data to the disk.

4) •	 Location $lC03 (data direction port) is used to control the
direction of the data port A (located at $lCOl). When
location $lC03 is set to $FF data port A is in the write
mode. When location $lC03 is set to $00 data port A is in
the read mode.

5).	 Location $lCOC (PCR) controls the mode of the R/W head
itself. Bit 5 of this location is used to control the
selection of read (1) or write (0). Set this location to
the proper mode prior to setting the data direction port
(location $lC03). Always leave the PCR in the read mode
after writing to the disk!

PPMII	 WORKING tINSIDE' THE DISK DRIVE PAGE 129

STANDARD 1541 FORMAT

Before we discuss some of the more exotic protection methods
available on the 1541 it is essential to understand the normal
format that is used on the 1541 disk drive.

The disk drive begins the format routine with the familiar
'BUMP'. The disk drive is forced to step the R/W head outward
46 tracks (towards track 1). Since even the best of disk drives
can only go to track 41, this insures that the R/W head will
definitely hit the end stop. The R/W head is positioned by
BUMPing up against the end stop and then 'bouncing' away from
the end stop approximately 0.006 to 0.010 of an inch. This
initial BUMP is critical to the overall alignment of the 1541.
If the clearance (0.006-0.010 in.) is not correct, the disk
will be formatted out of alignment. All the tracks are
dependent upon the initial clearance obtained after the BUMP.
For instance, if the clearance obtained after the BUMP is 0.001
in. all of the tracks formatted by this drive will be
0.005-0.009 in. out of alignment. Remember that the BUMP
initially positions the R/W head at the proper location.

_The 1541 uses a track spacing of 48 tracks per inch (48 tpi).
This means that each track is approximately 0.020 in. apart
center to center. In order for the head to move from track to
track it is necessary for the stepper motor to step two times.
Each step of the stepper motor is only 0.010 in. (approx.).
This means that the stepper motor is capable of moving the head
at the rate of 96 tracks per inch (96 tpi or appx. 0.010 in.
per step). Half tracking (96 tpi) is a normal and necessary
function of the 1541 disk drive. The movement of the stepper
motor is controlled by the DOS (Disk Operating System). During

R/W

the normal format
tracks (48 tpi).

procedure, data is written only on the full

We have now established
approximately 0.010 in.
This roughly corresponds

that the R/W head
away from the end
to the center to

of the
stop
center

drive is
after a
distance

left
BUMP.
of a

half track. Now that the drive has properly located the
head at track 1 the format procedure will begin.

When formatting a track, the drive first puts the R/W head into
write mode and sets the controller to the proper density for
that track. Next the disk drive will write a track full of sync
marks ($FF) to the disk, thereby erasing the track. Then the
drive will write 4000 bytes of the value $55 to the disk.
Approximately 1/2 the track will contain a giant sync mark
($FF's) and the other half will contain a series of $55's. Now
the DOS will go through a complicated and time consuming
routine to establish the actual length of the track in number
of bytes. Each drive will vary in the rotational speed of the
disk. Some drives are faster, others are slower. If a drive
spins slower than normal there will be more room for data on a

PPMII STANDARD 1541 FORMAT PAGE 130

track (bits will be closer together). If a drive spins faster
than normal there will be less room for data on the track (bits
will be farther apart). Remember, bits are timed out (clocked
out) at a certain number of bits per second. This complicated
calculation procedure will compensate somewhat for the speed
variations of the disk drive. Once the approximate number of
bytes that can be stored on the track is calculated, the length
of the gap required between sectors is determined (inter-sector
gap or sector tail gap). The length of this gap is varied as
necessary from one track to another in order to keep the
spacing between the sectors on a track uniform.

The drive will then compute the header images for the
particular track that is to be formatted. These images are the
GCR coded form of the actual header blocks for the sectors on
the track. Each will include the header block identifier ($08),
the checksum for the header, the sector number, the track
number, the second 10 byte, the first ID byte, two $OF bytes.
All of the images for the track will be created and stored in
RAM ahead of time. The GCR image of a dummy data block is also
created and stored in RAM. The data block image includes the
data block identifier ($07), 256 bytes of dummy data, the data
block checksum and two $00 bytes. Next the track is 'cleared'
by writing the value $55 to track 10240 times. This will again
erase the track. Following is a representation of how the
header block will be written to the disk.

T~e header block is immediately followed by the' data block.
Following is a representation of how the data block will be
written to the disk.

SYNC HEADER SECTOR TRACK ID2 IDl $OF $OF HEADER
MARK BLOCK 10 NUMBER NUMBER GAP

~ , ..

~ , ",,--r
*f ;u ,

G
;' c-,

"'... r'--.

SYNC
MARK

DATA
BLOCK
ID

256
DATA
BYTES

DATA
BLOCK
CHKSUM.

$00 $00
BYTES

INTER
SECTOR
GAP

NEXT
SECTOR

Now the actual formatting of the track will begin. First, five
$FF bytes are written to the disk as a sync mark. Sync marks
are written directly to the disk as the value $FF (%1111 1111);
they are NOT converted into GCR.Next, the GCR image for sector
O's header is written. Then the header gap is written to the
disk. This consists of eight $55 bytes. The header gap is NOT
converted into GCR, it is written to the disk as the value $55.
Next, the data block sync mark is written to the disk. This
again consists of five $FF bytes written directly to the disk.
Then the data block (including identifier $07) is written to
the disk in the GCR coded form. The drive will now write out
the proper number of inter-sector gap bytes for that track. The
number of gap bytes written was determined by the elaborate
calculations before formatting began.

This whole process will be repeated until all of the sectors
have been written to the track. Once the last sector has been

PPMII STANDARD 1541 FORMAT PAGE 131

.~

/\;\

Cb)

written to the disk the drive will kill the write mode and
leave the drive in the read mode. Now the drive will attempt to
verify the format of the disk. If the format verified OK the
drive will step the R/W head to the next track and begin the
procedure again. Another track will be formatted until all 35
tracks are done.

After the disk has been formatted the BAM and other information
on track 18, sector 0 will be written to the disk. The disk is
now completely formatted and ready to accept data and/or
programs. Most microcomputers will use the same types of disks
(5-1/4 in. diameter). What makes a disk unique is the format or
the way that data will be stored on the disk.

Whenever the 1541 disk drive is in the write mode (i.e. writing
data to the disk) a 'GUARD BAND' will also be written to the
disk. This guard band will erase an area on the disk to either
side of the track. The purpose of a guard band is to prevent
one track's information from 'bleeding' over to an adjacent
track. This guard band will also erase data written to a disk
from a drive that was out of alignment. The guard band will
also erase any information that was previously written on
either of the two adjacent half tracks. The area erased by the
guard band will ensure that there is no track to track
interference of the data.

Let's look at a 'standard' disk, that was formatted on a
'standard' drive. For the purposes of our illustration we must
make some assumptions:

1}. The rotational speed of the disk is exactly 200
milliseconds {five revolutions per second}. The speed will
not vary from 200 ms. during the format procedure.

2}.	 The disk drive is in perfect mechanical and electrical
condition.

3}.	 The media (disk) used is flawless and certified to the
highest standards.

4}. There will not be any 'glitches' during the format
procedure.

It is quite unrealistic that any disk drive will be able to
maintain the standards that we are going to use for our
illustration. If it was possible to maintain these standards
let's see what we might find on our standard disk.

PPMII	 STANDARD 1541 FORMAT PAGE 132

STANDARD DISK DATA (TYPICAL)

FIELD HEX BYTES GCR BITS

HEADER SYNC
HEADER
HEADER GAP
DATA SYNC
DATA BLOCK
TAIL GAP

5
8
8
5

260
8

40
80
64
40

2600
64

(NOT CONVERTED INTO GCR)

(NOT CONVERTED INTO GCR)
(NOT CONVERTED INTO GCR)
(BLK 10, DATA, CHKSUM & OO'S)
(VARIES PER CALCULATIONS)

TOTAL BITS PER SECTOR 2888 (= 361 GCR BYTES PER SECTOR)

Now that we have established the length of a 'standard' sector on a disk, let's use this
information to determine the total number of bytes used on a given track. To determine the
total bytes used, we only have to multiply the number of sectors per track by the number of
bytes used per sector. Remember, the bytes per sector is a typical value and may vary.

TRACKS SECTORS PER TRACK GCR BYTES PER SECTOR TOTAL GCR BYTES USED PER TRACK
~ 1-17 > 21

C') 18-24 19
fT1

25-30 18
w 31-35 17

X
X
X
X

361

361

361

361

=
=
=
=

7581

6859

6498

6137

w

Let's examine a few more of the relationships that exist on the 'standard' 1541 format.

BIT BYTE SECTORS GCR BYTES GCR BYTES % OF BYTES UNUSED
TRACKS DENSITY DENSITY /TRACK REQUIRED AVAILABLE USED BYTES

PER TRACK PER TRACK PER TRACK PER TRACK

1-17 3.25 us 26 us 21 7581 7692 98.5% 111
18-24 3.50 us 28 us 19 6859 7142 96.0% 283
25-30 3.75 us 30 us 18 6498 6666 97.7% 168
31-35 4.00 us 32 us 17 6137 6250 98.2% 113

In order to determine the GCR BYTES AVAILABLE PER TRACK, all
that is necessary to do is divide the time required for one
rotation (200 milliseconds or 0.2 seconds) by the time required
to write one byte to the disk (byte density). In the above
example it will be found that track 1 byte density equals 26
us/byte (26 microseconds or 0.000026 seconds per byte). If we
divide 0.2 seconds (one rotation time) by 0.000026 sec/byte
(byte density) we will obtain a value of 7692 bytes available
per track. The difference between the bytes available and the
bytes required may be referred to as the unused bytes per
track. These unused bytes are $55's that were written to the
disk just prior to the actual format. They just provide a gap
on the disk to prevent over writing of data on the disk due to
speed variations. During the normal operation of the DOS these
bytes will not be used again, nor will the tail gap bytes.

Before we can begin to understand how to modify the data on the
disk for use in a protection scheme, it is essential to have a
grasp of how the data would normally stored on a track. Review
the above data before proceeding further.

PPM I I STANDARD 1541 FORMAT PAGE 134

CUSTOM DOS ROUTINES

In this chapter we'll present several custom DOS routines.
These will allow you to examine disks for various types of
formatting irregularities such as data written on ha1f-tracks t
altered densitYt extra sectors t extra tracks t long data blocks
and nonstandard sync marks. The routines are similar to what
you might find in a protected program t and so may be adapted
for use in your own protection schemes.

In order to use these routines t you will need to have DRVMON64
from the DI-SECTOR package. The ease with which we can transfer

chapter, but you'll miss the hands-on experience. If you

a routine to the drive's memorYt execute it and examine the
results with DRVMON
entire DI-SECTOR
still learn about

makes it alone well
package. If you don't
the workings of the

worth
have

disk

the price of
DRVMON you

drive from

the
can

this
out on

are serious about exploring the 1541 t DRVMON is essential
(there may be other programs similar to DRVMON which can be
used t but all our examples will be based on DRVMON).

Make sure you have read the preceding chapters on using DRVMON t
on GCR and on the standard 1541 format. A reference book such
as INSIDE COMMODORE DOS or ANATOMY OF THE 1541 will also prove
invaluable. When you experiment with these routines be sure to
use disks with expendable information t since we will operating
at a very fundamental level of the drive. Any mistake could be
disastrous to the data on the disk.

STANDARD FORMAT

Let's very briefly review the standard disk format. Each
standard sector consists of two parts: the header block
(containing header block identifier and checksum t sector and
track numbers t disk ID and padding bytes) and the data block
(containing the data block identifier t 256 data by test data
checksum and padding bytes). This information is not stored on
the disk in ASCII characters but rather in a special form
called GCR. The header b10~k is preceded by a SYNC mark
(usually 40 1-bits = 5 $FF's) and followed by the header gap.
The data block is next t also preceded by a sync mark and
followed by the inter-sector (tail) gap. This pattern is
repeated throughout a track; the tail gap at the end of the
last sector on a track is usually larger than the other tail
gaps on that track. There are 35 tracks on a standard 1541
disk t spaced approximately .020 inch apart t center to center
(48 tracks per inch). The outer tracks are written at a higher
density than the inner tracks.

PPMII CUSTOM DOS ROUTINES PAGE 135

The first program we'll look at is called "READ GCR". We have
given you both the source (assembler) and object (binary)
versions of the program. The source code is compatible with the
Commodore, PAL and other assemblers. This is handy if you want

(in hex) and the code. This routine loads into the

to make
is call
version

changes to the code yourself. The
ed "READ GCR.ASM" and the object

is "READ GCR.OBJ".

source
code

code version
(executable)

Figure DOS-1 shows a combined listing of both the object code
source

computer at $4300, but is designed to reside in the drive's
memory at $0300. In the source code on disk, all the
instruction locations are given in the $4300 range. For
convenience we have changed the instruction locations in figure
005-1 to the $0300 range. All the program examples in this
chapter will follow this pattern.

Let's assume for now that we have turned on the drive motor,
moved to the proper track, etc. and are ready to begin
executing our routine (we'll see in a minute just how to
accomplish this). Refer to figure OOS-l. The area from
$0400-04FF, which we'll call the storage buffer, will receive
the data read in from disk by our routines. After clearing the
storage buffer, the code at $030B-0315 sets the R/W circuitry
into read mode. In order to start at the beginning of a block
(header or data), we have to wait until a sync mark is found.
This is the purpose of the code at $0316-0328. We loop around
waiting for a sync mark to be detected (Bit 7 of location $lCOO
is used to detect sync marks). If one isn't detected within
about .5 second (a very generous margin - over 2 revolutions!)
we store a 'no SYNC mark error' (code $03) in location $0000
and call it quits. If and when we do find a sync mark, the
first byte read is always an image of the sync, so we will
discard it. The bytes themselves appear at location $lC01, so
we simply load a byte from that location and then go on.

Now we are finally ready to read valid data bytes. Since bytes
are clocked in one bit at a time, we have to wait until the
entire byte has been read in. This is signalled by the overflow
flag V being,set to 1 (BYTE READY). We start by clearing the V
flag (CLV) and then waiting at GETBYTE ($032F) as long as it is
still clear. Once BYTE READY is signalled, we simply load the
data byte from $lC01 and save it to our storage buffer, indexed
by the Y-register. We continue getting bytes by looping back to
GETBYTE until the buffer is full. At that point we will stop.
We store a 'no error' (code $01) into location $0000. Note that
the error code is placed into the same location our IEO I
command was originally put. This is very important, since if we
don1t wipe out the execute command when done, the DOS may keep
re-executing our routine. Finally, we terminate the routine by
jumping to the DOS ROM error handling routine. This handles
turning off the drive motor and resuming normal disk controller
functions.

PPMII CUSTOM DOS ROUTINES PAGE 136

FIGURE OOS-l: READ GCR

1030: 0300
1040: 0300 *= $0300 ,READ GCR VI. 26
1050: 0300 78 SEI
1060: 0301 AO 00 LDY #$00 ,FILL WORK SPACE WITH 00
1070: 0303 A9 00 LDA #$00
1080: 0305 CLEARIT = *
1090: 0305 99 00 04 STA $0400,Y ,STORE 00 AT $0400-$04FF
1100: 0308 C8 INY
1110: 0309 DO FA BNE CLEARIT
1120: 030B 20 00 FE JSR $FEOO ,SET PCR TO READ MODE
1130: 030E AD OC 1C LDA $lCOC
1140: 0311 09 OE ORA #$OE
1150: 0313 8D OC 1C STA $lCOC
1160: 0316 A2 00 LDX #$00 ,SET UP TIMER FOR SYNC
1170: 0318 AO 00 LDY #$00
1180: 031A TIMEOUT = *
1190: 031A 88 DEY
1200: 031B DO 07 BNE WAITSYNC
1210: 031D CA DEX
1220: 031E DO 04 BNE WAITSYNC
1230: 0320 A9 03 LDA #$03 ,03=NO SYNC IF NO SYNC THEN END
1240: 0322 DO 19 BNE ENDIT
1250: 0324 WAITSYNC = * ,CHECK FOR SYNC
1260: 0324 2C 00 1C BIT $lCOO
1270: 0327 30 F1 BMI TIMEOUT
1280: 0329 AD 01 1C LDA $lC01 ,SKIP FIRST BYTE
1290: 032C B8 CLV
1300: 032D AO 00 LDY #$00
1310: 032F GETBYTE = * ,READ DATA FROM DISK
1320: 032F 50 FE BVC GETBYTE ,WAIT FOR BYTE READY
1330: 0331 B8 CLV
1340: 0332 AD 01 1C LDA $lC01 ,LOAD BYTE FROM DATA PORT
1350: 0335 99 00 04 STA $0400,Y ,STORE DATA FROM $0400-$04FF
1360: 0338 C8 INY
1370: 0339 DO F4 BNE GETBYTE
1380: 033B A9 01 LDA #$01 ,01=NO ERROR
1390: 033D ENDIT = * iFINISH UP AND END
1400: 033D 85 00 STA $0000 iSTORE ERROR CODE IN COMMANAD QUEUE
1410: 033F 4C 6E F9 JMP $F96E ,ROM ROUTINE TO END

PPMII CUSTOM DOS ROUTINES PAGE 137

FIGURE DOS-2: READ GCR 1K

1050: 0300
1060: 0300 *== $0300 iREAD 1K OF GCR V3
1070: 0300 78 SEI
1080: 0301 AO 00 LOY #$00 iFILL WORK SPACE WITH 00
1090: 0303 A9 00 LOA #$00
1100: 0305 CLEARIT == *
1110: 0305 99 00 04 STA $0400,Y iSTORE 00 AT $0400-$04FF
1120: 0308 C8 INY
1130: 0309 DO FA BNE CLEARIT
1140: 030B 20 00 FE JSR $FEOO iSET PCR TO READ MODE
1150: 030E AD OC 1C LOA $lCOC
1160: 0311 09 OE ORA #$OE
1170: 0313 80 OC 1C STA $lCOC
1180: 0316 A2 00 LOX #$00 ;SET UP TIMER FOR SYNC
1190: 0318 AO 00 LOY #$00
1200: 031A TIMEOUT == *
1210: 031A 88 DEY
1220: 031B DO 07 BNE WAITSYNC
1230: 0310 CA DEX
1240: 031E DO 04 BNE WAITSYNC
1250: 0320 A9 03 LOA #$03 i03==NO SYNC IF NO SYNC THl'1 END
1260: 0322 DO 23 BNE ENDIT
1270: 0324 WAITSYNC == * iCHECK FOR SYNC
1280: 0324 2C 00 1C BIT $lCOO
1290: 0327 30 F1 BMI TIMEOUT
1300: 0329 AD 01 1C LOA $lC01 iSKIP FIRST BYTE
1310: 032C B8 CLV
1320: 0320 AO 00 LOY #$00
1330: 032F GETBYTE == * iREAD DATA FROM DISK
1340: 032F 50 FE BVC GETBYTE iWAIT FOR BYTE READY
1350: 0331 B8 CLV
1360: 0332 AD 01 1C LOA $lC01 iLOAD BYTE FROM DATA PORT
1370: 0335 99 00 04 STA $0400,Y iSTORE DATA FROM $0400-$04FF
1380: 0338 C8 INY
1390: 0339 DO F4 BNE GETBYTE
1400: 033B EE 37 03 INC $0337 iUSED TO FILL BUFFER FROM $0500-$07FF
1410: 033E AD 37 03 LOA $0337 iWITH GCR DATA FROM THE DISK
1420: 0341 C9 08 CMP #$08
1430: 0343 DO EA BNE GETBYTE
1440: 0345 A9 01 LOA #$01 ; 01 =NO ERROR
1450: 0347 ENDIT = * iFINISH UP AND END
1460: 0347 85 00 STA $0000 iSTORE ERROR CODE IN COMMAND QUEUE
1470: 0349 4C 6E F9 JMP $F96E iROM ROUTINE TO END

PP~1 II CUSTOM DOS ROUTINES PAGE 138

A couple of notes are in order about this routine. First, since
we simply waited for any sync mark before reading, we will come
in at a random point on the track. We may find a data block
after the sync or a header block. Second, the bytes we read in
are raw GCR bytes. This is useful since you can 'see' exactly
what is on the disk. If you want the corresponding hex bytes
instead, you must convert the bytes yourself as outlined in the
chapter on GCR recording (or use the DOS ROM conversion routine
to do this for you). Third, we only read in 256 bytes after the
sync. Recall from the chapter on standard disk format that
since GCR is 25% longer than hex, a typical sector takes about
361 GCR bytes (header and data block together). Depending on
which sync we pick up first, we will either read in just the
first part of a data block, or else a whole header block
followed by part of a data block (including the intervening
sync mark, which will appear as only a single byte).

Now that we have a good idea of what the read routine itself
entails, let's look at how we will get set up to execute it and
how we will examine the results. In order to read from or write
to the disk, a number of things must be done first. First of
all, the drive motor must be turned on and brought up to the
normal speed (300 rpm). Then the stepper motor must be directed
to move the R/W head to the correct track. Based on the track
we are moving to, the proper bit density must also be selected.
The job of controlling the drive and stepper motors and setting
the density could be done directly by our routine, but
fortunately the DOS (Disk Operating System) has a built-in
command called the EXECUTE command that will do this for us
automatically and then jump into our routine.

At this point, the motor will be up to speed and the head will
be sitting on the track, ready for our routine to do the actual
reading or writing. In other words, from here on we're on our
own! Depending on what we are doing, we may want to change the
density, move to a half-track, search for a sync mark, etc.
before reading. In our first routine we just wait for a normal
sync mark and read the next 256 bytes. Let's execute it.

Start by loading into the computer the version of DRVMON that
resides at $COOO. Execute it with SYS 49152. You will see the
start-up message and then the '.' command prompt. At this point
you are operating DRVMON in the computer. All our work will
done in the disk drive, so we have to switch over to working in
the drive now by using the 08 command (that's the LETTER 0, not
the digit 0; the 8 is for device 8). You should be rewarded
with the ']' prompt (to get back to working in the computer,
type just O). All commands will now reference the drive's
memory rather than the computer's, except for a load or save.
The load command 'L' still loads the routine into the computer;
we'll have to transfer the code to the drive with the transfer
command 'TC'. To do a save we just reverse the process;
transfer the data to the computer with 'TO' and save with'S'.

PPMII CUSTOM DOS ROUTINES PAGE 139

Assuming you have DRVMON operating in the drive, load the first
DOS program into the computer with:

JL "READ GCR.OBJ",08

Note that ORVMON should already have put the I]' prompt on the
line, so donlt type it. This program will load into the C64 at
$4300, like all of our examples in this chapter.

Having loaded the program into the computer, you must now
transfer it to the drive. The routine takes up much less than
one block of memory, but we will just transfer a whole block so
that all our routines can be done with the same transfer
command, namely:

]TC 4300 43FF 0300

This transfers the memory from $4300-43FF in the computer to
$0300 in the drive. Check to see that the routine has been
transferred by disassembling part of the drive memory at $0300
with:

JD 0300

You should see the following code:

0300 78 SEI

0301 AO 00 LOY #$00

0303 A9 00 LOA #$00

0305 99 00 04 STA $0400,Y

etc.

Remove the program disk and insert a blank formatted disk.
Next, initialize the drive with:

J@I

(DRVMON has a DOS mini-wedge built into it). The initialize
command forces the drive to read the BAM at track 18, sector o.
Initializing is necessary in some of the experiments we'll do,
and a good habit in general.

To execute the routine we will use the job queue command 'EO'.
The job queue was discussed in the chapter on 'Working Inside
the Disk Drivel. To use lEO', we first put the number of the
track we wish to examine into location $0006 of drive memory
and then put $EO into location $0000 (with ORVMON we can do
them both at the same time). The next time the disk controller
is looking for something to do it will see our command, get us
positioned on the proper track at the proper speed with the
proper read density set, and then jump to location $0300 and
begin executing. To display the first 8 bytes of memory, type
the following and hit RETURN:

M 0000 0000

PPMII CUSTOM DOS ROUTINES PAGE 140

Now cursor back up to the first byte displayed (after the
]:OOOO) and type EO over it. DON'T HIT RETURN. Cursor over to
memory location $0006 (2nd byte from end) and type in your
track number. Let's use track 18 ($12) for our example. After
doing this your line will look like:

]:0000 EO 00 00 00 00 00 12 00

(The 00 bytes may be different depending on previous
operations) Take a deep breath and press RETURN. The drive
should come alive, the head should step to track 18 and the red
access light should come on briefly. Then everything shuts off
again almost immediately - itls done.

The first thing you should do is check that the operation
proceeded normally. The job error code returned by our program
is automatically put back into location $0000 by the error
handling routine, so display $0000 again with M 0000 0000. A
normal termination will result in an $01 code at location
$0000. If you donlt have the $01 code, an error has taken place
(a list of the error codes is given in the chapter on working
inside the drive). In this case the storage buffer will be
filled with $00 bytes. If you do have the $01 code, you are
ready to examine the GCR data at $0400-$04FF. Display the
beginning of this area with M 0400 0400. You should see either
a $52 or a $55 as the first byte. These are part of the GCR
codes for a header block identifier ($08) and a data block
identifier ($07) respectively. The rest of the code can be
deciphered with the aid of the GCR chapters. It might be
instructive for you to stop here and do that for practice. 1 1 11
wait.

Now that youlre back, 1et l s look at an abnormal track. With the
IEO I command we can position the head at any track we wish,
even past track 35! Some drives can go out to track 40, but
many have trouble beyond track 37. If you send the head too
far, it may become physically stuck. If this happens, you have
two options. Remove the cover and back the head up by hand, or
try to execute a IBUMP request ICO I through the job queue
(OUCH!). We all know what that can do to your drive, so letls
just stick to track 36. Execute the routine with track 36 ($24)
specified. This time the job error code should be $03 (no
sync). This corresponds to DOS error number 21 as reported
normally through the error channel to the computer (in fact, by
adding 18 to the job error code we get the DOS error number in
most cases). We get this error because on a normal disk track
36 has never been formatted. Occasionally, a disk may come from
the manufacturer with some random garbage out there that
happens to correspond to a sync mark (10 consecutive 1-bits).
Also, some commercial disks may use tracks 36-37 as part of a
protection scheme. If you get a sync mark there, you might want
to examine the storage buffer. If you don't get a sync mark, no
data was read and the storag~ buffer will be all OO's.

PPMI I CUSTOM DOS ROUTINES PAGE 141

A modified version of 'READ GCR' is also included on the
program disk. This one is called 'READ GCR 1K ' (.A5M and .OBJ).
As the name implies, it is just like 'REAO GCR' except that it
reads 1024 consecutive bytes (lK) from the disk after finding a
sync mark. These bytes are placed into drive memory at
$0400-07FF. The program listing appears in figure 005-2.

HALF-TRACKS

The next routine weill present will allow you to position the
head on a half-track and attempt to read the data there. We saw
earlier that the standard tracks are about .020 inch apart (48
tracks per inch). However, the stepper motor is capable of
positioning the head midway between two standard track
positions. This is called half-tracking (96 tpi). We can read
and write data on a half-track just ~s if it were on a
whole-track, with one catch. Writing data on a half-track will
render both of the adjacent whole-tracks unreadable, and vice
versa (writing to a whole-track will wipe out the half-tracks
on either side). To position the head on a half-track, we have
to control its movement directly. This is done by stepping the
two low order bits (bits 0 & 1) of location $lCOO sequentially
through their four possible combinations (cycling). This was
explained in the chapter on working inside the drive. The order
in which you proceed through the sequence determines whether
you move the head inward or outward.

The program is called 'HALF TRACK' (.ASM and .OBJ) and a
listing is given in figure 005-3. This routine works exactly
like our first example except for half-tracking. To use it you
load the routine into the computer, transfer it to drive memory
with 'TCI, initialize the drive with '@IO', enter the track
number and execute the routine with 'EO I . The 'EO' command
positions us to the whole-track nearest to where we want to be.
Once there we will simply step outward or inward half a track
and begin reading. The section of the program from $0316 to
$0332 does the stepping for us. Basically, we get the value
from $lCOO, cycle the low bits to the next value in the
sequence and store it back at $lCOO. Using an INX statement at
$0319 cycles forward in the sequence. This steps the head
inward (forward; towards higher-numbered tracks). To step
outward, simply replace the INX with a DEX. After stepping, we
have to wait a little bit to give the head time to move. That's
all there is to it. We can proceed with our regular read
process. load, transfer and execute this routine exactly like
the previous one. If your disk does not have information
written on the half-track, the results will be unpredictable.
You may get an error returned, or you may seem to terminate
normally. If you examine the storage buffer, however, you will
see garbled data there. This comes from Ibleed-over ' from the
adjacent whole-tracks.

PPMII CUSTOM DOS ROUTINES PAGE 142

FIGURE 00S-3: HALF TRACK

1040: 0300
1050: 0300 *= ~0300 ,ROUTINE TO READ HALF TRACKS V3
1060: 0300 78 SEI
1070: 0301 AO 00 LDY #$00 ,FILL WORK SPACE WITH 00
1080: 0303 A9 00 LDA #$00
1090: 0305 CLEARIT = *
1100: 0305 99 00 04 STA $0400,Y ,STORE 00 AT $0400-$04FF
1110: 0308 C8 INY
1120: 0309 DO FA BNE CLEARIT
1130: 030B 20 00 FE JSR $FEOO ,SET PCR TO READ MODE
1140: 030E AD OC 1C LDA $lCOC
1150: 0311 09 OE ORA #$OE
1160: 0313 8D OC 1C STA $lCOC
1170: 0316 AE 00 1C LDX $lCOO ,STEP HEAD IN HALF TRACKS
1180: 0319 E8 INX ,CHANGE TO DEX TO MOVE HEAD OTHER WAY
1190: 031A 8A TXA
1200: 031B 29 03 AND #$03 ;CYCLE BITS 0 & 1
1210: 031D 85 14 STA $0014
1220: 031F AD 00 1C LDA $lCOO
1230: 0322 29 FC AND #$FC
1240: 0324 05 14 ORA $0014
1250: 0326 8D 00 1C STA $lCOO ,STEP HEAD 1/2 TRACK
1260: 0329 A2 AA LDX #$AA ;WAIT FOR HEAD TO SETTLE
1270: 032B DELAY! = *
1280: 032B AO 00 LDY #$00
1290: 032D DELAY 2 = *
1300: 032D 88 DEY
1310: 032E DO FD BNE DELAY2
1320: 0330 CA DEX
1330: 0331 DO F8 BNE DELAY! ,HEAD SETTLED AT HALF TRACK
1340: 0333 A2 00 LDX #$00 ,SET UP TIMER FOR SYNC
1350: 0335 AO 00 LDY #$00
1360: 0337 TIMEOUT = *
1370: 0337 88 DEY
1380: 0338 DO 07 BNE WAITSYNC
1390: 033A CA DEX
1400: 033B DO 04 BNE WAITSYNC
1410: 0330 A9 03 LDA #$03 ,03=NO SYNC IF NO SYNC THEN END
1420: 033F DO 19 BNE ENDIT
1430: 0341 WAITSYNC = * ;CHECK FOR SYNC
1440: 0341 2C 00 1C BIT $lCOO
1450: 0344 30 F1 BMI TIMEOUT
1460: 0346 AD 01 1C LDA $lC01 ,SKIP FIRST BYTE
1470: 0349 B8 CLV
1480: 034A AO 00 LDY #$00
1490: 034C GETBYTE = * ;READ DATA FROM DISK
1500: 034C 50 FE BVC GETBYTE ;WAIT FOR BYTE READY
1510: 034E B8 CLV
1520: 034F AD 01 1C LDA $lC01 ;LOAD BYTE FROM DATA PORT
1530: 0352 99 00 04 STA $0400,Y ,STORE DATA FROM $0400-$04FF
1540: 0355 C8 INY
1550: 0356 DO F4 BNE GETBYTE
1560: 0358 A9 01 LDA #$01 ,Ol=NO ERROR
1570: 035A ENDIT = * ;FINISH UP AND END
1580: 035A 85 00 STA $0000 ,STORE ERROR CODE IN COMMANAD QUEUE
1590: 035C AD OC 1C LDA $lCOC ;KILL PCR
1600: 035F 29 FD AND #$FD
1610: 0361 8D OC 1C STA $lCOC
1620: 0364 4C 6E F9 JMP $F96E ;ROM ROUTINE TO END

PPMII CUSTOM DOS ROUTINES PAGE 143

There is one thing to note about using the IEO I job queue
command to move the head initially. Before moving the head with
IEO I , the DOS consults a stored value to see what track it is
currently on. If it is being told to go to the same track it
thinks it is already at, it will not move the head at all. This
sounds reasonable until we realize that when we move the head
with our routine, we don't change the stored value. Try this
experiment. First, issue an I@II command to initialize the
drive. Set the job queue track to 30 ($lE) and execute the
routine. The head will step out to track 130-1/2 1• Now if you
execute the routine again, the DOS still thinks the head is on
track 30, so the 'EO I command WILL NOT move it back to 30. When
the routine steps out a half-track again, the head will end up
at track 311 Whatls more, it will stay a whole track off until
you either power-off, initialize, or perform a job queue sector
operation like read. To top it off, track 31 is written at a
lower density than track 30. If we try to read at this point we
may find that all we get is some garbled data (see the next
section on density). The simplest way of avoiding problems like
this is to initialize the drive with an I@IO I before e~ecution.

CHANGING DENSITY

The next routine we will look at is 'DENSITY' (.ASM and .OBJ).
This routine is also a variation of the IREAD GCR I routine,
except that we change the density before attempting to read
data. Density corresponds to the rate at which bits are written
out to (and read back in from) the disk. This process is
controlled by a clock which can be switched to one of four
rates. These four different clock rates give us four different
densities to choose from. Each density is normally used only in
a particular 'zone l (range of tracks) on the disk. This
explains why different tracks have different numbers of sectors
on them. Within a zone the number of sectors per track is the
same, but from zone to zone the number varies. The outer tracks
(1-17) are written at the highest rate and have the most
sectors; the inner tracks (31-35) are written at the lowest
rate and have the fewest sectors. In other words, the higher
the track number, the lower the density and number of sectors.

Density is controlled through bits 5 and 6 of location $lCOO.
The four possible values for these two bits correspond to the
four available densities. The higher the value of these two
bits, the higher the density selected will be. When you use the
IEO I or other job queue commands to move the head, the proper
density is selected automatically based on the track you are
moving to. Once control is transferred to our routine, we can
alter the density by simply changing location $lCOO. We have to
be careful what densities we choose, however.

PPMII CUSTOM DOS ROUTINES PAGE 144

FIGURE DOS-4: DENSITY

1050: 0300
1060: 0300 *= $0300 ;ROUTINE TO READ CHANGED DENSITY 3

;THIS ROUTINE WILL READ ANY TRACK AT TRACK 1 DENSITY
;USE THIS ON THE INNER TRACKS FOR THE 'BEST' RESULTS

1090: 0300 78 SEI
1100: 0301 AO 00 LDY #$00 ;FILL WORK SPACE WITH 00
1110: 0303 A9 00 LDA #$00
1120: 0305 CLEARIT = *
1130: 0305 99 00 04 STA $0400,Y ;STORE 00 AT $0400-$04FF
1140: 0308 C8 INY
1150: 0309 DO FA BNE CLEARIT
1160: 030B 20 00 FE JSR $FEOO ;SET PCR TO READ MODE
1170: 030E AD OC 1C LDA $lCOC
1180: 0311 09 OE ORA #$OE
1190:
1200:
1210:

0313
0316
0319

8D
AD
09

OC
00
60

1C
1C

STA $lCOC
rr;i)A:"~$tc6diT r ORA #$60' , I

;GET CURRENT DENSITY
;SWITCH DENSITY TO TRACK 1-17 DENSITY

1220: 031B 8D 00 1C /J.1'.b. $lCQQJ ;STORE CHANGED DENSITY AT $lCOO
1230: 031E A2 00 LDX #$00 ;SET UP TIMER FOR SYNC
1240: 0320 AO 00 LDY #$00
1250: 0322 • TIMEOUT = *
1260: 0322 88 DEY
1270: 0323 DO 07 BNE WAITSYNC
1280: 0325 CA DEX
1290: 0326 DO 04 BNE WAITSYNC
1300:
1310:

0328 A9
032A DO

03
19

LDA
t<, "B.NE

#$03
ENDI'l:':::,

;03=NO SYNC IF NO SYNC THEN END

1320: 032C WAITSYNC = * ;CHECK FOR SYNC
1330: 032C 2C 00 1C BIT $lCOO
1340: 032F 30 F1 BMI TIMEOUT
1350: 0331 AD 01 1C LDA $lC01 ;SKIP FIRST BYTE
1360: 0334 B8 CLV
1370: 0335 AO 00 LDY #$00
1380: 0337 GETBYTE = * ;READ DATA FROM DISK
1390: 0337 50 FE BVC GETBYTE ;WAIT FOR BYTE READY
1400: 0339 B8 CLV
1410: 033A AD 01 1C LDA $lC01 ;LOAD BYTE FROM DATA PORT
1420: 033D 99 00 04 STA $0400,Y ;STORE DATA FROM $0400-$04FF
1430: 0340 C8 INY
1440: 0341 DO F4 BNE GETBYTE
1450: 0343 A9 01 LDA #$01 ;Ol=NO ERROR
1460: 0345 ENDIT = * ;FINISH UP AND END
1470: 0345 85 00 STA $0000 ;STORE ERROR CODE IN COMMANAD QUEUE
1480: 0347 4C 6E F9 JMP $F96E ;ROM ROUTINE TO END

PPMII CUSTOM DOS ROUTINES PAGE 145

Through experimentation we have found that as long as you read
or write a track at a LOWER than normal density, you should not
have any trouble, even if you go to the lowest possible
density. When WRITING at a lower than normal density, you are
just giving the bits more 'room' on the disk than they need
(you wonlt be able to write as many bits as normal on that
track, however). When READING a track at a lower density than
it was written, you should also be successful. The drive is
able to compensate when bits come in a little faster than
normal.

If you try to raise the density above normal, however, you
begin to run into trouble. When WRITING at a higher than normal
density, you may force the bits too close together for the disk
to handle. The bits could 'blur l together and the information
may not be written reliably. When READING, if you increase the
density only one level higher than normal, you can usually
manage to read a standard-sized sector. If you raise the
density two levels above normal, you can sometimes read
successfully, but you can rarely read at three levels above
normal. In this situation the read circuitry is not prepared to
wait as long as necessary for a bit to register. It comes to a
premature conclusion about what the bit is, and you get false
results. To summarize, .you can lower the density to any level
you desire for both reading and writing. but raising the

~ gensity higher than normal can cause trouble.

Figure DOS-4 is the source code listing for IDENSITY'. Again
you load, transfer and execute this routine just like our first
example (donlt forget to initialize the drive first). If you
compare this routine to 'READ GCR' you will see that a short
section of code has been inserted at $0316. This code changes
the density to the value for tracks 1-17 (highest density) by
ORA'ing the current density value at $lCOO with $60. This sets
bits 5 and 6 to 1 IS.

Different density levels might be used on the same track of a
disk. If you want to examine such a disk. set the density to
the lowest value and you will be able to read everything
perfectly. Reproducing the disk presents a problem, however.
Even though you can read the information, you can't tell
directly what density it was written at originally. You may be
able to get around this by timing how long the sector takes to
be read, which will be less as the density gets higher.

NYBBLE COUNTING

A nybble is half of a byte, i.e. 4 bits or 1 hex digit. Nybble
counting refers to counting the number of nybbles on a track or
between two points on a track. Actually, 'nybble ' is a
misnomer; on the 1541 all we can read are whole bytes. The term
comes from the Apple drives, which do allow true nybble
counting. Since the term has become so entrenched in the
computer jargon, we'll continue to use it.

PPMI I CUSTOM DOS ROUTINES PAGE 146

The routine on the program disk to do nybb1e counting is called
'NYBBLE ' (see figure DOS-5). The actual counting is done at
lines $032E-0351. This routine finds a sync mark, waits for it
to end, and then begins counting bytes (GCR of course). It
counts until another sync is detected, waits until that sync is
past, and resumes counting again. It continues this until it
has passed all the sync marks on the track. In other words, it
counts the total number of bytes on the track, EXCLUDING most
sync bytes (each sync mark is counted as one byte by the
routine).

The routine uses location $0014 in the drive (normally unused)
to keep track of how many sync marks it has seen so far on the
track, so it can tell when to stop. This sync count is
initially set at $032E to the number of syncs on the track PLUS
1. The value there is correct only for tracks 1-17. There are
21 sectors on these tracks, and each sector has 2 sync marks
(header and data block). Therefore the value used is 43 (21x2+1
= 43 = $2B). If you want to nybb1e count on a different track,
be sure to change this value.

The ' ny bb1e ' count itself is kept in the X and Y registers
while the routine is executing. This allows a 2-byte (16-bit)
count, which is necessary since the number of bytes possible on
a track is well over 256 (around 6000-7000). The count is
stored at $0400-0401 in 10-byte/hi-byte order when the routine
ends. The count normally varies from track to track on a disk,
even on tracks in the same zone (e.g. 1-17). The count may even
vary by one or two bytes when reading the same track
repeatedly, due to variations in the media, drive speed and
operation of the DOS. If this kind of routine was used in a
protection scheme, you would have to allow a margin for error
of a few bytes plus or minus. Note that the count includes the
tail gap bytes put on the track during formatting, which can
change from disk to disk. Because of this, the best idea when
protecting a program would be to actually count the relevant
track on each disk after creating it, and then store the count
on the disk somewhere. The protection code~ in your program
would nybb1e count the track and compare the result with the
stored value. If the difference was outside the acceptable
range, your program would crash itself.

There are many variations on the basic idea of nybb1e counting.
You could count just gap bytes, or even the sync bytes. Another
idea is to slow down the drive when creating a disk. This will
allow us to get more bytes on a track than is normally
possible, as we have already seen. This kind of disk is hard to
duplicate with a copy program, since it just can't put that
many bytes on a track without having your drive slowed down
too.

PPMII CUSTOM DOS ROUTINES PAGE 147

FIGURE 005-5: NYBBLE

1050: 0300 P"
1060: 0300 *= $0300 IROUTINE TO NYBBLE COUNT A TRACK
1070: 0300 78 SEI
1080: 0301 AO 00 LOY *$00 IFILL WORK SPACE WITH 00
1090: 0303 A9 00 LOA *$00
1100: 0305 CLEARIT = *
1110: 0305 99 00 04 STA $0400,Y ISTORE 00 AT $0400-$04FF
1120: 0308 C8 INY
1130: 0309 DO FA BNE CLEARIT
1140: 030B 20 00 FE JSR $FEOO ISET PCR TO READ MODE
1150: 030E AD DC 1C LOA $1COC
1160: 0311 09 OE ORA #$OE
1170: 0313 80 OC 1C STA $lCOC
1180: 0316 FINOSYNC = *
1190: 0316 A2 00 LDX 11$00 ISET UP TIMER FOR SYNC
1200: 0318 AO 00 LOY #$00
1210: 03lA TIMEOUT = *
1220: 031A 88 DEY
1230: 031B DO 08 BNE WAITSYNC
1240: 0310 CA OEX
1250: 031E DO 05 BNE WAITSYNC
1260: 0320 A9 03 LOA #$03 ;03=NO SYNC IF NO SYNC THEN END
1270: 0322 4C 69 F9 JMP $F969
1280: 0325 WAITSYNC = * I CHECK FOR SYNC
1290: 0325 2C 00 1C BIT $lCOO
1300: 0328 30 FO BMI TIMEOUT
1310: 032A AD 01 1C LOA $lC01 ;SKIP FIRST BYTE
1320: 0320 B8 CLV
1330: 032E A9 2B LOA #$2B ;NUMBER OF SYNCS+l ON THE TRACK
1340: 0330 85 14 STA $14 ;CONTER IS SET UP FOR TK 1-17
1350: 0332 A2 00 LDX 11$00
1360: 0334 AO 00 LOY #$00
1370: 0336 SYNC1BEG = *
1380: 0336 2C 00 1C BIT $lCOO ,FIND SYNC MARK BEGINNING
1390: 0339 30 FB BMI SYNC1BEG
1400: 033B OECCOUNT = * 10ECREMENT COUNTER
1410: 033B C6 14 DEC $14
1420: 0330 FO 13 BEQ ENOIT
1430: 033F SYNCIENO = *
1440: 033F 2C 00 1C BIT $lCOO ,WAIT FOR END OF SYNC MARK
1450: 0342 10 FB BPL SYNC1ENO
1460: 0344 GETBYTE = * ,START COUNT NOW
1470: 0344 50 FE BVC GETBYTE
1480: 0346 AD 00 1C LOA $lCOO ;CHECK FOR START OF SYNC BYTE
1490: 0349 10 FO BPL OECCOUNT
1500: 034B B8 CLV
1510: 034C E8 INX ;INCREMENT BYTE COUNTER - LO BYTE
1520: 0340 DO F5 BNE GETBYTE ;COUNT 256 BYTES
1530: 034F C8 INY ;INCREMENT BYTE COUNTER - HI BYTE
1540: 0350 DO F2 BNE GETBYTE
1550: 0352 ENOIT = * ,FINISH UP AND END
1560: 0352 A9 01 LOA #$01
1570: 0354 85 00 STA $0000
1580: 0356 8E 00 04 STX $0400
1590: 0359 8C 01 04 STY $0401
1600: 035C 4C 69 F9 JMP $F969

CUSTOM DOS ROUTINES PAGE 148PPMII

SYNCHRONIZED TRACKS AND TRACK ARCING

These two schemes are variations of the same basic idea. Rather
than putting special information on a track, information is put
on the track in a SPECIAL POSITION, RELATIVE TO ANOTHER TRACK.
That is what we mean when we say the tracks are 'synchronized'.
This works as follows: you find a reference sector on one
track, say sector 0, then immediately step out to the next
track and read in the first sector that comes along. Let's say
it is sector 5. If you attempt to copy these tracks with a copy
program, it may duplicate all of the information on the two
tracks, but it won't reproduce the relative positions of the
sectors (unless it is a very smart copy program). When you try
to repeat the process of find-step-read, you'll jump into the
second track at a different place than sector 5. This is a very
subtle protection scheme since there are no abnormalities on
the disk per se.

This basic idea can be expanded considerably. We could read a
sector, step out to the next track and read a sector, step out
and read again, etc. many times. We could even step back to a
previous track. We could pick up a value from each sector as we
go, maybe just the sector number itself. All the values would
have to be right before the program will run. Synchronizing
many tracks multiplies the difficulty of reproducing the disk.

If we add half-tracking to the idea of synchronized tracks, we
get what is called track arcing. In this kind of scheme, we
align the sectors on adjacent half-tracks. We said earlier that
you can't write to two adjacent half-tracks without one
interferring with the other. This problem is avoided by not
writing complete tracks. We could write only 3 sectors on the
first track, then step out a half-track and write another 3
sectors, then step out again and write 3 more. If you pay close
attention to the relative time it takes to step out versus the
time it takes for the disk to turn, and you don't write too
many sectors on each track, you can successfully avoid placing
any sectors side-by-side on adjacent half-tracks. You could
even write a few sectors, step out a half-track and write
again, then step BACK a half-track and write a few more sectors
on the first track, if you are very careful.

When checking the synchronization of sectors in a protection
scheme, you should allow a certain margin for error due to
speed variations, etc. For instance, after finding the
reference sector 0 and stepping out, you might accept either
sector 5 or 6 as the first sector encountered on the next
track. If you did find 6, you might wait until 5 comes around
on this track before stepping out again. This would prevent
differences from building up over the course of several tracks.

PPMII CUSTOM DOS ROUTINES PAGE 149

FIGURE 00S-6 SYNCHRONIZED TRACKS

1070~ .
10801
1090~

1100:
1110~

1120:
1130:
1140:
1150:
1160:
1170:
1180:

1200:
1210:
1220:
1230:
1240:
1250:
1260:
1270:
1280:
1290:
1300:
1310,
1320,
1330:
1340,
1350:
1360,
1370:
1380:
1390:
1400:
1410:
1420:
1430:
1440:
1450:
1460,
1470:
1480,
1490,
1500,
1510:
1520:
1530:
1540:
1550:
1560:
1570:
1580:
1590:
1600:
1610:
1620,
1630:
1640,
1650,
1660,
1670:
1680:
1690:
1700:
1710:
1720:
1730:
1740:
1750,
1760:
1770:
1780:

0300
0300 7.
0301 1'.0 00
0303 1'.9 00
0305
0305 99 00 04
0308 c8
0309 DO FA
030B 20 00 FE
030E AD DC 1C
0311 09 OE
0313 SD DC 1C

0316 20 10 F5
0319 20 22 03
031C 20 22 03
031F 4C 40 03
0322
0322 AE 00 1C
0325 E8
0326 81'.
0327 29 03
0329 85 14
032B AD 00 1C
032E 29 FC
0330 05 14
0332 8D 00 1C
0335 1'.2 AA

0337
0337 1'.0 00
0339
0339 88
0331'. DO FD
033C CA
033D DO F8
033F 60
0340
0340 1'.2 00
0342 1'.0 00
0344
0344 88
0345 DO 07
0347 CA
0348 DO 04
0341'. 1'.9 03
034C DO 1C
034E
034E 2C 00 1C
0351 30 Fl
0353 AD 01 1C
0356 B8
0357 1'.0 00
0359 1'.2 01'.
035B
035B 50 FE
035D B8
035E AD 01 1C
0361 99 00 04
0364 C8
0365 CA
0366 DO F3
0368 1'.9 01
0361'.
0361'. 48
036B 1'.0 04
036D 84 31
036F 1'.0 00
0371 84 30
0373 20 EO F8
0376 68
0377 85 00
0379 4C 6E F9

CLEARIT

,SET UP

STEPHEAD

DELAY!

DELAY2

FINDSYNC

TIMEOUT

WAITSYNC

GETBYTE

ENDIT

*
SEI
LDY
LDA
'"
STA
INY
BNE
JSR
LDA
ORA
STA
TO
JSR
JSR
JSR
JMP
•
LDX
INX
TXA
AND
STA
LDA
AND
ORA
STA
LDX

LDY

DEY

BNE
DEX
BNE
RTS

LDX
LDY

DEY
BNE
DEX
BNE
LDA
BNE
•
BIT
BMI
LDA
CLV
LDY
LDX
'"
BVC
CLV
LDA
STA
INY
DEX
BNE
LDA

PHA
LDY
STY
LDY
STY
JSR
PLA
STA
JMP

$0300

#$00
#$00
*
$0400,Y

CLEARIT
$FEOO
$lCOC
#$OE
$lCOC

FIND TRACK
$F510
STEPHEAD
STEPHEAD
FINDSYNC
*
$lCOO

#$03
$0014
$lCOO
#$FC
$0014
$lCOO
#$AA

*
#$00

*

DELAY 2

DELAY1

*
#$00
#$00
*

WAITSYNC

WAITSYNC
#$03
ENDIT
*
$lCOO
TIMEOUT
$lC01

#$00
#$01'.

*
GETBYTE

$lC01
$0400,Y

GETBYTE
#$01

*

#$04
$31
#$00
$30
$F8EO

$00
$F96E

,ROUTINE TO READ SYNCHRONIZED TltACXS V3

;FILL WORK SPACE WITH 00

;STORE 00 AT $0400-$04FF

,SET PCR TO READ MODE

AND SECTOR
;FIND PROPER SECTOR-ERROR #2 IF CAN'T FIND
,MOVE 1/2 TRACK
;MOVE 1/2 TRACK
,JUMP TO READ THE DATA FROM THE ADJACENT TRACK

;STEP HEAD IN HALF TRACKS
;CHANGE TO DEX TO MOVE HEAD OTHER WAY

,CYCLE BITS 0 & 1

,STEP HEAD 1/2 TRACK

;WAIT FOR HEAD TO SETTLE

,HEAD SETTLED AT HALF TRACK

;SET UP TIMER FOR SYNC

;03=NO SYNC IF NO SYNC THEN END

;CHECK FOR SYNC

;SKIP FIRST BYTE

,READ DATA FROM DISK
,WAIT FOR BYTE READY

;LOAD BYTE FROM DATA PORT

,STORE DATA FROM $0400-$04FF

,Ol=NO ERROR

,FINISH UP AND END

,SAVE ERROR CODE
;CONVERT GCR TO HEX
;SET UP POINTERS FOR GCR TO HEX CONVERSION

,CONVERT GCR TO HEX
,GET ERROR CODE

, ROM ROUTINE TO END

PPMII CUSTOM DOS ROUTINES PAGE 150

The routine on the program disk to read synchronized tracks is
called 'SYNCHRONIZED'. The listing is shown in figure DOS-6. At
line $0316 we call upon a DOS ROM routine to find the reference
sector initially. This sector number must be placed in location
$0007 in drive memory (next to the track number at $0006)
before issuing the 'EO' command to execute the routine. The ROM
routine attempts to find the given sector on the selected
track. If it doesn't succeed, it registers an error code $02 in
location $0000 and does not return to our routine. If it does
find the reference sector, it returns to our routine, which
then steps out a track (two half-tracks) by calling on its own
subroutine. Note that there is a small delay in the subroutine
after stepping. This is to allow the head time to move and get
settled. You may want to change this a bit. but don't reduce it
too much.

If you want to step out more or less than one
simply change the number of times you call
subroutine. Once we get to the proper track. we
our normal read process. We wait for the first

whole track.
the stepping
simply enter

sync to come
along and read in the first 10 GCR bytes. This will capture an
entire header block if it is encountered next (if the tracks
are truly synchronized, you probably WILL find a header next).
Now we do something that we didn't do in our previous routines.
We save our error code on the stack and call on a DOS routine
to convert the GCR into hex. This puts the decoded data back
into our storage buffer at $0400 (note that it will only occupy
the first 8 bytes of the buffer now). Finally we terminate as
usual.

Based on what you find in the buffer, you may want to adjust
the step delay. For instance, if you are consistently landing
on a data block. you could reduce the delay a little to pick up
the preceding header too. Or you could increase the delay to
pick up the following header. As with all our routines, this
routine is a starting point for you to experiment with.

PPMII CUSTOM DOS ROUTINES PAGE 151

EXTRA SECTORS

It is possible to add an extra sector to tracks
chapter on the standard 1541 format explains how
stores a sector. Here is a quick summary of the
'normal' sector:

18-24. The
the drive

size of a

OF BYTES x8= # BITS
INFORMATION HEX GCR

HEADER SYNC 5 40
HDR BLOCK 8 10 80
HDR GAP 8 64

DATA SYNC 5 40
DATA BLOCK 260 325 2600
TAIL GAP 8 64 (typical)

TOTAL 361 2888

Standard number of bytes/track: 7142
- 361 bytes/sector x 19 sectors: - 6859

= Extra bytes per track = 283

The only variable factor in the above setup is the length of
the tail gap after the data block. When formatting a disk, the
DOS actually 'ca1ibrates' itself to the speed of your drive. It
starts on each track by writing a long section of sync marks
($FF's) and then a section of contrasting bytes ($55's). By
reading these bytes back and counting the length of the two
sections, it can calculate how many bytes will actually fit on
that track, assuming the drive speed stays exactly the same,
which it doesn't. On a 'perfect' drive (at a constant 300 RPM)
it will be able to get 7142 bytes on tracks 18-24. Since this
is more than it needs for the sectors on the track, it splits
these extra bytes among the tail gaps of. the sectors.
Typically, it might put 8 bytes in each tail gap on tracks
18-24 (it will make the gap after the last sector on the track
even longer).

This gives us a typical sector length on these tracks of 361
GCR bytes (see table above). Multiplying 361 times the number
of sectors normally on the track (19) gives us a total of 6859
bytes needed. This leaves 283 bytes leftover. Unfortunately,
this is not enough to do a whole extra sector (361 bytes).
There are two possible ways around this problem if we want to
squeeze an extra sector on the track. We can reduce the size of
the tail gaps or slow down the speed of the drive (Or both).
Let's look at reducing the tail gap size first.

PPM I I CUSTOM DOS ROUTINES PAGE 152

The DOS has a table built into it containing the number of
sectors on each track of the disk. We can change the preset
number on tracks 18-24 to 20 instead of 19 by burning a new
ROM. When the DOS tries to format the track, it will proceed as
follows. Since we now need 20 sectors instead of the normal 19,
and each needs a minimum of 353 bytes (not counting the tail
gap) we will need at least 7060 bytes. There are 7142 bytes
available on the track (ideally), so we have 82 bytes left over
to split among the tail gaps. Since there are 20 tail gaps,
this leaves 4 bytes for each, with a whopping two bytes left to
spare (which will make the last tail gap that much longer than
the others). Thus each sector will now take 353+4 = 357 bytes.
This is right at the limit that the DOS format routine will
allow. In fact, it will not put less than 4 bytes in a tail gap
of its own accord when formatting (it will signal an error
instead). If this worries us (it shouldn't) we could get some
more breathing room with our other option, reducing the speed
of the drive.

If we reduce the drive speed (by adjusting a potentiometer in
the drive), each revolution will take a little longer. Since
bytes are clocked out at a constant amount of TIME per byte,
more time per revolution means more bytes per track. Since we
have 283 bytes left over on tracks 18-24 (see the chart above),
but we need 361 bytes to fit in another whole sector, we have
to pick up 78 bytes. If we slow the drive down about 1.1% when
formatting, we can manage this. This will put the bits slightly
closer together on the track than normal, but the diskette will
be able to handle it. The bits will come in a little faster
when reading at normal speed (with 'READ GCR', for instance),
but we saw in the density section above that this is no
problem. In fact, reducing the drive speed amounts to
increasing the density. The change in density is much smaller
than you get by going to another clock rate, however. Thus by
reducing the drive speed we can fine-tune the density more
flexibly than possible otherwise.

We will also be able to write to the disk at normal speed
without trouble. Since the disk is turning a little faster now
than it was when formatted, the sector will take up slightly
more space when rewritten than it did originally, by about 1%
or 4 bytes. This will reduce our tail gap from 8 bytes to 4 (in
theory), but that is enough room. We are not in danger of
writing over the sync mark of the next sector. In fact, a sync
mark only needs to be 10 BITS long, and the DOS normally writes
40 bits (5 $FF bytes). Thus we could even overlap some of the
normal sync and get away with it. This might happen on a drive
that was turning faster than normal.

There is one other way to get
let a 2040 or 3040 drive do it
drives were set for 20 sectors
read-compatible with the 1541.

an extra s
for us!

on tracks

ector on
These

18-24,

these tracks
old
and

Commodore
they are

PPMII CUSTOM DOS ROUTINES PAGE 153

MODIFIED FORMATS

Another type of nonstandard format that can be used on a disk
is to change the information that is written on a track rather
than the way it is written. This includes altering the
information in the sector headers as well as varying the number
of gap bytes and their values, using custom sync marks, etc.
Altering the sector header information can result in
mis-numbered sectors of various types as well as some of the
regular 'bad block' errors. These types of changes are 'softer '
errors than changing density, adding extra sectors and
half-tracking.

At this point you should look back to the chapter on standard
1541 format and review the standard sector setup. We'll start
our discussion of these modified formats with altered sector
header information. Any of the sector header bytes can be
changed to yield a protection method. A normal read will yield
an error in most cases, but the header is easily read by a
custom DOS routine. You can just as easily read a data block
after it. By combining more than one change you can come up
with virtual do-it-yourself headers.

Let's start with the first byte of the header, the header block
identifier (not to be confused with the disk 10). This byte is
always $08 (hex, not GCR) on a standard disk to distinguish
header blocks from data blocks, which start with $07. If some
other value is used instead, this will fool the disk into
giving an error 20 (header block not found) on a normal attempt
to read the sector. A custom DOS routine can simply wait for a
sync mark to finish and then check to see if the next byte is
the special value it expects. If not, the routine can try
again. If it doesn't find the special identifier after a
certain number of attempts, it can assume the disk is a copy.
Another way to use this would be to read a particular normal
sector, and then expect the next sector header after it to
contain the nonstandard identifier.

The second byte of the header is the header block checksum.
This is simply an EOR of the following four bytes (sector and
track numbers and disk ID bytes). Changing this value will
result in an error 27 (checksum error in header block) on a
normal read. Again, a custom routine can find the header on its
own and verify not only that there is an error 27, but also
that the checksum contains the particular value it is looking
for, without ever 'bump'ing the head.

The next two bytes are the sector and track numbers, in that
order. By manipulating these bytes we can make all sorts of
strange things appear on the disk, such as: duplicate sector
numbers, sectors numbered out of order (displaced sectors),
incorrect track numbers (not the same as the track they are on)
and illegal track and sector numbers (values outside the normal
range). These seem to be popular currently, but many copy
programs can already handle them easily. The errors yielded by

PPMII CUSTOM DOS ROUTINES PAGE 154

to
ease

results

these changes range from none at all (duplicate or out-of-order
sectors) to errors 20 and 27 (since they are included in the
header checksum).

There is an interesting story connected with the duplicated

sector idea. We know of one company which paid $5000 for the

rights to a protection scheme based on duplicating sectors 0-10

on a track twice! At that moment in time there were no copy

programs that could handle this scheme. The protected software

had barely hit the market when suddenly there appeared several

copy programs that could handle it easily. Looks like somebody

sure wasted their money!

Back to our sector header. The two bytes after the sector and
track numbers are the disk 10 bytes, in reverse order (102 then
101). Changing these bytes will give an error 29 (disk 10
mismatch) normally, although an error 20 is possible in certain
operations. These two bytes can be used in much the same way as
the preceding ones; e.g. we can check not only for an error 29
but for the actual value of the incorrect bytes.

The last two bytes of the header are just filler bytes, value
$OF (hex). These are used to pad out the header block to eight
hex bytes so it can be handled conveniently by the DOS ROM
4-byte hex to 5-byte GCR conversion routine at $F7E6. Normally
these have a value of $OF but since the DOS never examines them
again after formatting, they can be set to any value without
showing up as an error.

The DOS formats a track by preparing all the headers for the
track in advance and converting them to GCR. It also creates a
dummy data block in GCR. It then goes around the track, writing
a header sync, block and gap, followed by a data sync, block
and tail gap (previously calculated as explained in EXTRA
SECTORS). If you patch into the format routine or write your
own, you can easily write any sort of headers you wish on a
track, as well as changing gap and sync byte values, varying
gap lengths and creating extra long header and data blocks.
Reading this information is easy with the 'READ GCR 1K' program
we looked at earl i er. _~~ ~_~

On the program disk is another program ca11ed~EAD HEADERS~rs~-~~.
Figure 00S-7 lists the program code. This progra allow! you ,~\

look at all the headers on a track, decoded into HEX for ~'/

of reference. You'll need ORVMON to examine the

conveniently.

When you execute the routine with lEO' it moves the head to the
track you specify and begins reading headers (minus syncs and
gaps) into a storage buffer at $0400. For simplicity it only
takes those blocks with a valid header identifier byte ($52
GCR, $08 hex). It reads in 25 headers. Normal tracks contain a
maximum of 21 headers, so there will be a duplication of the
first few headers at the end of the buffer. This feature gives
the routine the ability to detect extra sectors on the track.

PPMII CUSTOM DOS ROUTINES PAGE 155

After reading in the 25 headers, it converts the entire buffer
from GCR to hex in one shot by calling on a DOS ROM routine.
This replaces the hex bytes into the buffer, where you can
examine them with DRVMON.

Referring to figure DOS-7, we see that the routine begins in
the same way as our previous examples. It finds a sync mark and
then at $0330 checks the next byte to see if it is a normal
header block identifier byte ($52 GCR). If not, the routine
goes back and waits for the next sync mark. Once it has found a
valid header identifier, it reads that byte and the next nine
bytes into the buffer, indexed by the V-register (header blocks
consist of 10 GCR bytes, which convert to 8 hex bytes). Next it
checks at $0357 to see if 250 ($FA) bytes have been read into
the buffer yet. This value represents 25 headers at 10 bytes
each. If there is more to do, the routine branches back up to
look for a sync and starts the whole process over again (it
saves the V-register in $03FF before branching because it is
used by the FINDSYNC code).

Once the buffer has been filled with headers, the no-error code
($01) is saved on the stack before the GCR-HEX conversion
routine is called. First it sets a DOS pointer at $30-31 to
point to the storage buffer at $0400, and then jumps to the
conversion routine which is at $F8EO. This routine puts the
converted bytes back into the buffer at $0400-04FF, replacing
the GCR version. Upon returning, the error code is retreived
from the stack and the routine is terminated.

Use an M 0400 command from DRVMON to examine the buffer after
this routine has terminated. Since the M command displays
memory 8 bytes at a time, each line will contain exactly one
header. However, the conversion routine strips off the very
first byte of the buffer, so each line starts with the second
header byte (checksum). At the end of the line you will see the
header identifier ($08) from the next header. Here's an example
of what you might see:

:0400 OA 00 23 44 49 OF OF 08 .. #01 ••

:0410 89 01 23 44 49 OF OF 08 .. #01 ..

From the second and third bytes you can see that these are the
headers for sectors 0 and 1 from track 35 ($23), and the disk
10 is '10 1 The checksums in the first bytes of each line are•

not correct, so that you'll get an error 27 on these sectors
with a normal read.

PPMII CUSTOM DOS ROUTINES PAGE 156

FIGURE 005-7: READ HEADERS

*= $0300 IROUTINE TO HEADERS V3
1080: 0300 78 SEI ,WILL READ 25 HEADERS AND DECODE
1090: 0301 AO 00 LDY #$00 ;FILL WORK SPACE WITH 00
1100: 0303 A9 00 LDA #$00
1110: 0305 CLEARIT = *
1120: 0305 99 00 04 STA $0400,Y ,STORE 00 AT $0400-$04FF
1130: 030B CB INY
1140: 0309 DO FA BNE CLEARIT
1150: 030B 20 00 FE JSR $FEOO ,SET PCR TO READ MODE
1160: 030E AD OC 1C LDA $lCOC
1170: 0311 09 OE ORA #$OE
11BO: 0313 BD OC 1C STA $lCOC
1190: 0316 A9 00 LDA #$00 ,SET COUNTER FOR THE 1 OF SECTORS
1200: 031B BD FF 03 STA $03FF ,COUNTER
1210: 031B FINDSYNC = *
1220: 031B A2 00 LDX 11$00 ,SET UP TIMER FOR SYNC
1230: 031D AO 00 LDY 1$00
1240: 031F TIMEOUT = *
1250: 031F 88 DEY
1260: 0320 DO 07 BNE WAITSYNC
1270: 0322 CA DEX
12BO: 0323 DO 04 BNE WAITSYNC
1290: 0325 A9 03 LDA #$03 ;03=NO SYNC IF NO SYNC THEN END
1300: 0327 DO 34 BNE ENDIT
1310: 0329 WAITSYNC = * ,CHECK FOR SYNC
1320: 0329 2C 00 1C BIT $lCOO
1330: 032C 30 F1 BMI TIMEOUT
1340: 032E AD 01 1C LDA $lC01 ,SKIP FIRST BYTE
1350: 0331 BB CLV
1360: 0332 AC FF 03 LDY $03FF
1370: 0335 READHDER = * ;FIND A HEADER
1380: 0335 A2 OA LDX #$OA ;COUNTER FOR TEN HEADER BYTES
1390: 0337 FINDHDR = * ;READ DATA FROM DISK
1400: 0337 50 FE BVC FINDHDR ,WAIT FOR BYTE READY
1410: 0339 BB CLV
1420: 033A AD 01 1C LDA $lC01 ,LOAD BYTE FROM DATA PORT
1430: 033D C9 52 CMP #$52 ,IS THIS A HEADER BLOCK
1440: 033F DO DA BNE FINDSYNC ,IF NOT, FIND NEXT HEADER BLOCK
1450: 0341 99 00 04 STA $0400,Y
1460: 0344 C8 INY
1470: 0345 CA DEX
1480: 0346 GETBYTE = * ;READ DATA FROM DISK
1490: 0346 50 FE BVC GETBYTE ;WAIT FOR BYTE READY
1500: 034B B8 CLV
1510: 0349 AD 01 1C LDA $lC01 ,LOAD BYTE FROM DATA PORT
1520: 034C 99 00 04 STA $0400,Y ,STORE DATA FROM $0400-$04FF
1530: 034F C8 INY
1540: 0350 CA DEX
1550: 0351 DO F3 BNE GETBYTE
1560: 0353 BC FF 03 STY $03FF
1570: 0356 3B SEC
1580: 0357 CO FA CPY #$FA ,DONE 25 SECTORS YET
1590: 0359 90 CO BCC FINDSYNC ;IF NOT DO AGAIN
1600: 035B A9 01 LDA #$01 ,Ol=NO ERROR
1610: 0350 ENDIT = * ,FINISH UP AND END
1620: 0350 48 PHA ;SAVE ERROR CODE IN STACK
1630: 035E AO 04 LOY #$04 ,SET UUP TO DECODE GCR INTO HEX
1640: 0360 84 31 STY $31 ,POINTERS TO BLOCK TO BE DECODED
1650: 0362 AO 00 LDY #$00
1660: 0364 84 30 STY $30
1670: 0366 20 EO FB JSR $F8EO ,ROM ROUTINE TO DECODE GCR
16BO: 0369 68 PLA ,GET ERROR CODE FROM STACK
1690: 036A 4C 69 F9 JMP $F969

PPMII CUSTOM DOS ROUTINES PAGE 157

Other types of modified format besides altered sector header
information are possible. The number of header gap bytes
(normally 8) can be changed or a nonstandard value used (gap
bytes are normally $55 GCR). The data block format can also be
altered. Its sync mark could be missing or replaced by a custom
value. The data block identifier could be changed from the
normal $55 GCR ($07 hex) to cause an error 22. The data block
checksum could be wrong (error 23). The OFF bytes ($00) used to
pad out the data block could be replaced with another value.
The tail gap bytes can be replaced with a custom value or
varied from sector to sector. These types of changes can all be
detected with the 'READ GCR lK' routine presented earlier.

Using the tools in this chapter, you can examine a disk on the
most fundamental level to see what type of protection has been
placed on it. You may also see routines similar to these in a
protected program. Even better, you can use these routines or
modified versions of them as part of your own protection
scheme. Once the routine has looked for the special format
you've used, a simple 'M-R' memory read command can read the
drive memory to determine the result. These routines also give
you a glimpse into the internal workings of the disk drive, to
get you started on your own investigations. We hope that you
have found this chapter useful and illuminating.

PPM I I CUSTOM DOS ROUTINES PAGE 158

ADDENDUM TO CUSTOM DOS ROUTINES

GENERAL NOTES

1)	 THESE ROUTINES ARE DESIGNED TO WORK ONLY ON A 1541 DISK
DRIVE. OTHER DRIVES MAY REQUIRE MODIFICATION TO THE ROUTINE.

2)	 ALWAYS USE A DISK FORMATTED ON A 1541 DRIVE FOR YOUR
INVESTIGATIONS. THE RESULTS WILL BE MORE PREDICTABLE.

3)	 ALWAYS INITIALIZE THE DRIVE WITH THE 'I~' COMMAND PRIOR TO
EXECUTING A CUSTOM DOS ROUTINE (do this faithfully). It is
also necessary to do a lUI' or 'UK' (RESET) command BEFORE
the '1m' with HALF TRACK, SYNCHRONIZED and TRACK ARCING.
These routines leave the drive in a nonstandard state (i.e.
on the half track). Prior to performing the routine for a
second time you should do a UI (or UK) then an 10 before
execution of another operation. If you don't use the above
commands it may be necessary to have your custom DOS routine
take over complete control of the head stepping.

4)	 THE RESULTS OF A ROUTINE CAN BE AFFECTED BY THE MECHANICAL
AND ELECTRICAL CONDITION OF YOUR DISK DRIVE AND DISKETTE. If
these routines are to be used as part of a protection scheme,
you must test them on as many drives as possible to see what
(if any) variation you can expect 'in the field'.

5)	 CHECK THE JOB ERROR CODE RETURNED IN LOCATION $0000 BEFORE
EXAMINING THE RESULTS. A value of $01 indicates no error. Any
other value may reflect trouble with a particular routine
and/or disk.

6)	 GIVE THE ROUTINES ENOUGH TIME TO EXECUTE BEFORE CHECKING THE
RESULTS. Certain routines take a perceptible amount of time,
e.g. READ HEADERS.

7)	 DRVMON 'LOCKS Up· OCCASIONALLY FOR REASONS UNKNOWN. Usually
it is necessary to reset the drive and sometimes the computer
too. Occasionally it is necessary to power-off to recover
(the drive's memory will be wiped out in any case). Also,
DRVMON sometimes puts '00, OK, 00, 00' into the storage
buffer ($0400-$04FF), if this happens just re-execute the
routine and try again.

8)	 All the routines include a check to find a sync mark on a
particular track. This check is timed, so if there is not a
sync mark on the track the routine will not search forever.
If the routine 'times out' pr~~r to finding a sync mark an
error will be reported in the job queue and the routine will
be terminated.

PPMII	 CUSTOM DOS ADDENDUM PAGE 158A

HALF TRACK
Requires a UI then an rm before execution. Also, you may get what
seems like valid data on a half track from 'bleed-over' from an
adjacent whole track. The amount of bleed-over depends upon the
physical and electrical condition of the disk drive used to
create the disk and upon the condition of the drive used to read
it. After this routine has executed and the data has been read
from the drive you should perform a ur and I' command to reset
the drive.

NYBBLE
Use a 1541-formatted disk only. This routine is preset for tracks
1-17 density; it must be altered (see text) for other tracks.

DENSITY
In the text we mention that it is possible to read data that was
written at different densities. This is true only for small
amounts of data. The more data read and/or the greater the
difference between density, the greater the chance of error when
reading the data. So, if you are going to read data from a disk,
it is important to know at what density it was written. Otherwise
the data read may not be reliable.

SYNCHRONIZED/TRACK ARCING
Requires a UI then an If before execution. TRACK ARCING is an
additional program not mentioned in the text. It is identical to
SYNCHRONIZED except it only steps out half a track. Synchronized
tracks, Track arcing and Spiral tracking are all related to one
another. The only variation of these routines is how far to step
and when to step the head. After this routine has
the data has been read from the drive you should
command to reset the drive.

executed
perform a

and
UI

READ HEADERS
Give
from

it time to work (1-2 seconds)
the buffer. This routine will

before you try
decode the data

to read
read from

data
the

disk (from GCR to hex). The decoding is part of the routine and
will be done automatically for you.

PPMII CUSTOM DOS ADDENDUM PAGE 1588

CARTRIDGES

The Commodore 64 contains the 6510 microprocessor, a new
member of the 65xx family. The 6510 contains 6 I/O lines
which it uses for external communication. The I/O lines and a
chip called the address manager (PLA) enable the 6510 to
perform memory bank selection. The 64 contains 64K of RAM,
20K of ROM, 4K of I/O devices and 8K of character ROM, as
well as the ability to directly control up to 16K of external
ROM. Since the 6510 can communicate with only 64K of memory
at a time, it uses bank selection to select certain banks or
areas of memory.

The Commodore 64's memory reconfiguration system can be
controlled externally by the hardware configuration of a
cartridge. The memory configuration necessary to accommodate
cartridges is controlled by two of the six I/O lines. These
two lines are the EXROM and the GAME lines.
lines are at logic one (+5 volts). When
inserted either one or both of these lines
logic zero (grounded, 0 volts). This results
reconfiguration of the 64's memory. The
figures depict the possible memory schemes.

FIGURE 1

\.ORAII •
LOIlAM • I LOIlAII • I HIRAM.
HIRAM • I HIIlAM • I EX ROM •
f!:J(Rllflil • 1 EltROM • 0 GAM[•
GAJltE • 1 GAME • I

OK KERNAL ROM

H I/O

.K RAM

OK RASIC ROM

OK RAM

16K RAM

16K RAM

£000
8K KERNAL ROM

U I/O

.K RAM

8K BASIC ROM

8J(CARTRI DGE

H.K RAM

16K RAM

EOOOEOOO

0000 0000
COOO

0000

COOOCOOO

AOOOAQOO

8000 80000000

.000 40004000

0000ooon 0000

OK KERNAL ROM

U I/O

.K RAM

16K ROM

16K RAM

16K RAM

Normally, these

a cartridge is

will be set to
in a hardware
following four

)

1
 LOAA" • X

HI RAIl • x
HROM • 1

0
0

GAMt: • v

[000

wooI

COOOI

.0.000I

80000

.000I

1000

0000

8K RllM

.K I/O

.K UNU~r.D

8K UNUSED

8K RuM

) ~K UNUSED

12K UNUSED

H ""..

Figure la shows the configuration which appears when the 64
is turned on. The EXROM and GAME lines are at
giving the computer the familiar 38911 bytes of
Figure lb shows the standard BASIC system
expansion cartridge. This memory arrangement is
grounding (logic zero) the EXROM line. The
cartridge can either be an extension of BASIC,

logic one
free RAM.

with an 8K
achieved by

expansion
or a video

game. With the exception of Commodore game cartridges, very
few game cartridges are only 8K. Figure lc depicts the memory

PPMI I CARTRIDGES EASY PAGE 159

configuration when both the EXROM and GAME lines are
grounded. This is the result of inserting a 16K cartridge,
which is the most common of the four memory reconfigurations.
It shows ROM area available from hex $8000 to $BFFF. Finally,
figure ld shows the memory reconfiguration resulting from a
very special type of cartridge. This cartridge was originally
manufactured by Commodore for the UlTIMAX computer.
Rearrangement of the 64's memory enabled the cartridges to
also be used with the 64. The cartridge grounds the GAME line
which switches out the KERNAl ROM. The KERNAl is replaced by
the 8K ROM of the cartridge. A more in depth explanation of
these cartridges and how to identify them can be found in the
next chapter.

The Commodore 64 searches for a special character
sequence from $8004 to $8008 (CBM80) to determine if there
is an autostart routine present in the cartridge area. The 64
checks these five bytes every time the computer is turned on
or reset. When the computer executes its cold-start KERNAl
routines it runs the code at $FCE2. The following sections of
code are executed by the 64:

FCE2 A2 FF lDX #$FF :RESET ROUTINE
FCE4 78 SEI
FCE5 9A TXS
FCE6 D8 ClD
FCE7 20 02 FD JSR $FD02 :CHECKS CBM80
FCEA DO 03 BNE $FCEF
FCEC
FCEF

6C
8E

00
16

80
DO

JMP
STX

($8000)
$D016

:AUTO-START

FCF2 20 A3 FD JSR $FDA3
FCF5 20 50 FD JSR $FD50
FCF8 20 15 FD JSR $FD15
FCFE 58 ClI :BASIC
FCFF 6C 00 AO JMP ($AOOO) :cold-start

FD02 A2 05 lDX #$05
FD04 BD OF FD lDA $FDOF,X :THIS ROUTINE
FD07 DD 03 80 CMP $8003,X :CHECKS CBM80
FDOA DO 03 BNE $FDOF : (WORKING
FDOC CA DEX :BACKWARDS)
FOOD DO F5 BNE $FD04
FDOF 60 RTS

.

FD10 C3 IC' :THE ROUTINE AT $FD02
FDll C2 IB I :CHECKS THIS AND
FD12 CD 'M' : JUMPS TO THE ADDRESS
FD13 38 18' : AT $8000 AND $8001
FD14 30 '0' :IF THE VALUES MATCH

If there is a 'CBM80' at $8004, the computer jumps to

PPMII CARTRIDGES EASY PAGE 160

the address contained in $8000 and $8001. This is called the
cold-start
illustrate:

vector. The following example will help to

8000 09 80 70 80 C3 C2 CD 38
8008 30

In the above example, the cold-start address would be
$8009. Remember, the vector is stored LO-BYTE, HI-BYTE
(reverse) order. The next two bytes contain the warm-start
vector. In our example this would be $8070. The warm-start
address is used when the 'RESTORE' key is pressed. Both of
these vectors point to the area of the program which must be
executed depending on the state of the computer. Sometimes
these addresses are identical, but most of the time they are
different. The next five bytes are the shifted letters
'CBM80'. The auto-start sequence will work whether the
routine (CBM80) is in ROM or RAM. If you used a monitor to
place the example into memory and then reset the computer,
the computer would attempt to execute code at $8009. Now that
we've covered the fundamental operation of cartridges it's
time to examine some of the coding techniques which are used
to protect cartridges.

Before we continue, you must be aware of a number of
assumptions we'll make about the individual attempting to
copy cartridges (that's you). First, you must have a
switchab1e expander board, preferrab1y one that has LED's and
a reset button. Currently, there are two boards ideally
suited for copying cartridges. The first is the Cartridge
Backer (CB) board which is available from CSM SOFTWARE INC.
This board can be purchased with the Cartridge Backer
software for $54.95, or separately for $24.95. The second
board is Cardco's Cardboard/5 which retails for $79.95.
Either of these boards have the capability to bank-select the
three cartridge configurations. They also have cartridge
ENABLE and power switches which allow cartridges to be
inserted or removed while the computer is on. Finally, both
have a reset button and LED's. There are two LED's used to
indicate cartridge size and type. The LED's on the CB board
are red, and the LED's on the Cardco board are yellow.
Throughout the rest of the chapter, references will be made
to the use of the boards. If you have another type of board,
you must determine the cartridge size and type in another
manner.

Next, it is assumed that you are familiar with the use
of a ML monitor. Most of the time, you should be using HIMON,
but s 0 met i me s L0M0N wi 11 be used because not all types of
cartridges reside at $8000. Don't use HESMON if you are doing
16K cartridges since it uses the BASIC ROM. The following
section is a brief review of the commands you will be using.

There are seven commands which will be used to copy
cartridges. They are: S, M, I,D, H, C and T.

PPMII CARTRIDGES EASY PAGE 161

The'S' command is used to save sections of code. For
example, if you wished to save a 16k cartridge you would do
the following:

S'name',08,8000,COOO

The 'M' command displays the hexadecimal contents of any
address or range of addresses in memory. For example, to
examine address 0001 you would do the following:

M 0001

This would display the next 8 bytes of memory starting at
address 0001.

The 'I' command is used to interrogate memory locations.
Interrogation converts the hexadecimal memory contents to
their ASCII equivalent and display them on the screen. You
will use the III command to check for the 'CBM80' at $8000.
For example:

I 8000

If an auto-start cartridge was inserted, you would see the
letters 'CBM80' from addresses $8004-$8008.

The '0' command is used to disassemble the contents of a
series of memory locations. This command displays the
mnemonic equivalent of the hexadecimal contents at a given
location. For example:

o 8000 8100

This would disassemble the memory contents from $8000-$8100.

The IH I command is used to locate a byte or series of
bytes within a specified memory range. For example:

H 8000 COOO 85 01

This would search the address range from $8000-$COOO for the
byte sequence 85 01. If there was a match, the address of the
match would be printed on the screen.

The 'C I command is used to compare the contents of two
sections of memory. For example:

C 8000 BFFF 2000

This would compare the contents of the address range from
$8000-$BFFF against the contents of address range
$2000-$5FFF. The address of any mismatch is printed on the
screen.

Finally, the 'T' command is used to transfer sections of
memory from one part of the computer to another. For example:

PPMII CARTRIDGES EASY PAGE 162

T 8000 AOOO 2000

This would transfer 16k of code from $8000-$BFFF to
$2000-$5FFF.

The last assumption is that you are familiar with
hexadecimal arithmetic, and have a means to convert numbers
from decimal to hexadecimal to binary. This is especially
important when trying to determine the effect of storing
numbers at address 0001. It is suggested you purchase a
scientific calculator capable of arithmetic conversion. A
good calculator at a reasonable price is the Casio FX-450.
This calculator is capable of arithmetic conversion of all
three number bases and only costs $25.00.

Now that we have covered the basic tools and skills
necessary to copy cartridges, it's time to examine some
cartridges.

We'll start with an 8K cartridge. A cartridge is 8K if
only the right LED is lit. Remember, on the Cardco 5, there
are 4 LED's per slot. You should only be concerned with the
two yellow LED'S. Insert your expander board into the
computer and turn on the computer. On the CB board, the
switches should be set as follows: swl, sw2, and sw4 should
be OFF; sw3 should be ON. On the Cardco board, you have two
master switches for the whole board and two for each of the 5
slots. We'll call the master switches swl (left) and sw2
(right). The switches for the slot your cartridge is plugged
into will be called sw3 (1) and sw4 (r). All the switches
should be OFF on the Cardco 5.

The above switch settings should give you 38911 BYTES
FREE on the main screen. Next, load HIMON and SYS 49152 to
activate it. Insert the cartridge into the slot and check the
LED's. If only the left LED is lit, go to the section on MAX
cartridges. If both LED's are lit, you have a 16K cartridge.
16K cartridges are similar to 8K except they reside from
$8000-$BFFF in the computer's memory. 16K cartridges will be
covered later, but be sure to read the section on 8K
cartridges or else you won't understand how to copy a 16K
cartridge. If only the right LED is lit, you have an 8K
cartridge which resides in the computer from $8000-$9FFF.
With the cartridge inserted in the slot, enable the cartridge
by turning ON sw4 and turning OFF sw3 on the CB board, and
turning ON sw4 and sw3 on the Cardco 5. The first thing which
must be done is to transfer the contents of the ROM cartridge
to the RAM underneath. Use the IT I command to do this:

T 8000 9FFF 8000

After the transfer is complete, disable the cartridge by
reversing the positions of sw3 and sw4 (both boards). The
contents of the cartridge must be copied to RAM so it can be
altered. If you try to alter the program while it is still in
ROM, you will get a '?' from the monitor because it was
unable to execute the command. Next, save the cartridge using

PPMII CARTRIDGES EASY PAGE 163

the'S' command:

S 'program name',08,8000,AOOO

Remember, you must save from the starting address to the
ending address plus one. Now examine the 5 bytes from
$8004-$8008 using the 'II command. Make sure there is a
'CBM80' at this location. If there is a 'CBM80·, try
executing the program by typing G FCE2 (software RESET) from
the monitor. Occasionally, a cartridge will run without any
modification, but most of the time you must make changes to
the program so it can run in RAM when loaded from the disk.

There are 5 types of conditions which prevent a
cartridge from running when it is in RAM. They are:

1.	 KERNAL routines (initialization)

2.	 BASIC ROM switch-ins (16K cartridges only)

3.	 Stores to cartridge area (8K:$8000-$9FFF,

16K:$8000-$BFFF)

4.	 Vectors in ZERO PAGE (program checks for particular

values)

5.	 CIA TIMER lA' running (location DCOE nonzero)

The first type of routine which must be removed from
almost all cartridges are the KERNAL initialization routines.
These routines are not actually intended as protection, but
they can prevent the cartridge from running when it is in
RAM. The routines are used in a cartridge because the
computer must be initialized when it is first turned-on.
There are 8 commonly used KERNAL routine:

HEX CODE NMEMONIC PURPOSE

20 81 FF JSR $FF81 initialize video

20 58 FF JSR $FF5B

20 84 FF JSR $FF84 initialize TIMERS
 ,20	 A3 FF JSR $FFA3
20	 87 FF JSR $FF87 clear RAM
20	 50 FD JSR $FF50
20	 8A FF JSR $FF8A initialize I/O
20	 15 FD JSR $FD15

If the cartridge you copied didn't run when the computer
was RESET, you must examine the code to determine the
problem. After you have RESET the computer and the cartridge
'crashed', you must flip-out the RAM to disable the program.
Do this by turning ON the EXROM switch (on both boards) and
press the RESET button. You should regain control of the i:
computer with 30719 BYTES FREE. Turn OFF the EXROM switch,

PPMII	 CARTRIDGES EASY PAGE 164

and SYS 49152 to activate the ML monitor. Some cartridges
overwrite the monitor area and the monitor must be reloaded.

The first thing which must be done is to transfer the
code from $8000 to $2000.

T 8000 9FFF 2000

This moves the 'crashed' version down to $2000 so it can
be compared with the original version. Next~ load the
original version you saved to disk:

L"program name~,08

This will load the original code into the computer at
$8000 (the place from where it was saved). With the 'crashed
version at $2000, and the original at $8000, it is now
possible to compare the two to check for differences. Use the
'C' command to compare the two sections of code:

C 2000 3FFF 8000

The 'crashed' version will be compared to the original
byte-for-byte and any differences will be reported on the
screen. The first byte ($2000) will be reported as being
different because the computer places a $55 at address $8000
when it is undergoing a RESET. If no other addresses are
reported as being different, the cause of the 'crash' is more
than likely due to the KERNAL initialization routines. Most
cartridges will operate properly once the KERNAL routine
calls are removed. Remember, this is only true for 8K
cartridges. With a 16K cartridge, a BASIC switch-in can cause
a 'crash' without altering any code in the program (more on
this later). Assuming the cause of the 'crash' is due to the
KERNAL routines, you can use the 'HI command to search for
references to them. For example:

H 8000 9FFF 20 81 FF

This will search from $8000-$9FFF for the KERNAL routine
$FF81, and report the address at which the routine is used if
it is present. (Remember, make all changes to the original
version of the program at $8000, not the version at $2000.
The changes should be made to the version at $8000 so the
program runs in the correct area when reloaded into the
computer}.The same procedure should be repeated for all 8 of
the KERNAL routine references. If there were a KERNAL routine
present in the program it must be replaced with NOP's ($EA).
This instruction means No OPeration. FIGURE 2 is an example
of a cartridge which Icrashed' because of KERNAL routines.

PPMII CARTRIDGES EASY PAGE 165

FIGURE 2

8E72 20 84 FF JSR $FF84 :KERNALS , ,
8E75 20 87 FF JSR $FF87 , ,
8E78 20 8A FF JSR $FF8A

8E78 20 81 FF JSR $FF8l , I

8E7E 78 SEI

8E7F A9 7F LOA #$7F

8E8l 80 18 03 STA $0318

8E84 A9 97 LOA #$97

8E86 80 19 03 STA #$0319

8E89 A9 00 LDA #$00

If you found the code shown in FIGURE 2, you would use
the 1M' command to display the code from $8E72-$8E70. Change
the bytes by placing the cursor over byte and change then to
$EA. At the end of each row of bytes you must press the
IRETURN' key to actually make the changes. The altered code
should look like FIGURE 3:

FIGURE 3

8E72 EA NOP

8E73 EA NOP

8E74 EA NOP

8E75 EA NOP

8E76 EA NOP

8E77 EA NOP

8E78 EA NOP

8E79 EA NOP

8E7A EA NOP

8E78 EA NOP

8E7C EA NOP

8E70 EA NOP

8E7E 78 SEI

8E7F A9 7F LOA #$7F

8E8l 80 18 03 STA $0318

8E84 A9 97 LOA #$97

8E86 80 19 03 STA #$0319

8E89 A9 00 LOA #$00

The altered code should now be saved to disk:

S Nprogram name",08,8000,AOOO

After the code is saved, try running the program by
typing G FeE2 from the ML monitor. If the cartridge was only
8K, there were no addresses reported different on
comparison,and you correctly changed the KERNAL routines, the
cartridge should run.

The previous example was extremely simple. If there had
been an address reported when you compared the 'crashed'
version with the original, the job of copying the cartridge
becomes much more involved. There are a number addressing
methods a cartridge can use to attempt to 'write' to itself.
These include: direct or absolute; indexed; indirect, indexed;

PPMII CARTRIDGES EASY PAGE 166

and indexed,indirect. For the rest of the manual, with the
exception of the MAX cartridges, all cartridges will be
assumed to be 16K. The rest of this chapter will cover the
BASIC ROM switch-in. The next chapter will cover the
addressing methods for 'writes', vectors at ZERO page, CIA
TIMERS, and MAX cartridges.

When a 16K cartridge is inserted, both the EXROM and
GAME lines are grounded (logic zero) which makes the area
from $8000-$COOO available for cartridge ROf4. It is also
possible to reconfigure the computer's memory using address
$0001. The two most common methods to protect a 16K cartridge
are KERNAL routines (previously covered) and BASIC
switch-ins. The BASIC ROM resides from $AOOO-COOO and is
switched-in over the top half of a 16K cartridge. The first 3
bits of address $0001 are used to control the memory
configurations. FIGURE 4 shows the values used to reconfigure
the computer's memory (also see pp. 260-267 of the
Programmer's Reference Guide).

FIGURE 4

VALUE at ADDRESS $0001

HEX BINARY DEC CONFIGURATION

37 00110111 55 NORMAL

36 00110110 54 BASIC-out

35 00110101 53 KERNAL and BASIC out

34 00110100 52 64K RAM (all out)

33 00110011 51 110 out, BASIC/KERNAL in

32 00110010 50 110 and BASIC out

31 00110001 49 110 and KERNAL out

30 00110000 48 64K RAM (all out)

The most common result of a BASIC switch-in i s the
computer returning to IREADY I when the program is run.

A 16K cartridge is copied in the same basic manner as an
8K. The only difference is that the BASIC ROM must be
switched out before you save the cartridge. The BASIC ROM can
be switched out using the 1M' command:

M 0001

The normal value at address $0001 is $37 ($07 on the
SX-64). This must be changed to $36 to switch-out the BASIC
ROM. Once this is done, you can save the code from
$8000-$COOO. FIGURE 5 is an example of a cartridge which

PPMI I CARTRIDGES EASY PAGE 167

stores a value at address $0001 to switch in the BASIC ROM.

FIGURE 5

BE36 AS 01 LDA $01
8£38 29 FB ORA #$01 :BASIC ROM on
BE3A 85 01 STA $01

.

BE57 AS 01 LDA $01
BE59 09 04 AND #$FB :CHAR ROM on
BE5B 85 01 STA $01

When working with address $0001, you must remember that
not every store to address $0001 is detrimental to the
operation of the cartridge. (This is why it is important to
have a calculator to convert the hex numbers to binary so you
can see which bits are being changed). In FIGURE 5, only the
first store to address $0001 will switch in the BASIC ROM and
'crash' the cartridge. There are two methods which can be
used to fix this type of protection. The first is to NOP
addresses $BE3A and $BE3B. removing the STA $Ol(store the
accumulator at address $0001). This method of repair is very
unreliable because it can prevent other needed ROMs in the
computer from being switched in or out. The second method is
the suggested method of repair. This method requires altering
the value which is AND'ed or ORA'ed with the accumulator.
Changing the value at $BE39 from $FB to $FA results in the
BASIC ROM remaining switched out and the other ROMs left
unaltered. The second store to address $0001 doesn't affect
the cartridge area. The second example switches-in the
character set. In order for the cartridge to run correctly,
the second store to address $0001 must be left unaltered.
Only change those Istores' to address $0001 which attempt to
switch-in the BASIC ROM. A quick way to search for 'stores'
to address $0001 is to use the IH ' command of the ML monitor.
FIGURE 6 is a list of possible BASIC switch-ins.

FIGURE 6

85 01 STA $01
84 01 STY $01
86 01 STX $01

80 01 00 STA $0001
8C 01 00 STA $0001
8E 01 00 STA $0001

99 01 00 STA $OOOl,Y
90 01 00 STY $OOOl,X

If you suspect a BASIC switch-in. search the code from
$8000-$COOO for a Istore' to address $0001. For example:

H 8000 COOO 85 01

PPMII CARTRIDGES EASY PAGE 168

Remember, after loading a 16K cartridge the BASIC ROM
must be switched out before examining the code from
$AOOO-$COOO. Use the 'M ' command to switch out the BASIC ROM.
After locating a store to address $0001, it must be NOP'ed or
the value must be changed. FIGURE 7 is a list of values which
can be used to enable or disable the different combinations
of ROMs.

FIGURE 7

OR	 (enable) AND (disable) CONFIGURATION (disabled)

01	 FE BASIC out
02	 FD BASIC & KERNAL out
03	 FC 64K RAM (all out)
04	 FB I/O out, CHAR ROM in
05	 FA BASIC & I/O out
06	 F9 I/O & KERNAL out
07	 F8 64K RAM (all out)

REVIEW

This first cartridge chapter covered the fundamental
operation of the 64 with external ROMs. You have been
introduced to some of the common methods of cartridge
protection including KERNAL routines and BASIC switches. The
following outline lists the areas that were covered and the
steps necessary to copy a 16K cartridge.

l.	 Use the 'M ' command to switch out BASIC.

2.	 Use the IHI command to search for KERNAL calls and BASIC
switch-ins.

3.	 NOP KERNALs and modify BASIC switch-ins.

4.	 Save altered code to disk.

5.	 Type G FCE2 from the ML monitor to run the program.

6.	 If the cartridge crashes, use the IC I command to compare
the two versions.

7.	 If the cartridge 'writes' to itself, see the next
chapter.

8.	 If there are no 'writes ' see the section on CIA TIMERS
in the next chapter.

PPMII	 CARTRIDGES EASY PAGE 169

ADVANCED CARTRIDGE PROTECTION

The previous chapter outlined the fundamentals of
cartridge operation, copying cartridges to disk, and simple
protection removal. This chapter will cover advanced
cartridge protection, CIA TIMERS, MAX cartridges, and
auto-start boots.

The last chapter dealt with the removal of protection
schemes that did not alter or I 'write" to the cartridge area
($8000-$COOO). This chapter concentrates on protection
schemes which attempt to alter themselves, resulting in a
program' 'crash ll if the program is run in RAl'JI.

Cartridge-based programs can be considered a permanent
form of computer memory. The program is "burned' I into 1-4
ROMs and cannot be altered by the user (see the advanced
section on EPROMs). When a program attempts to write values
to the cartridge area ($8000-$COOO), it is checking to see if
the program is still in ROM and hasn't been copied to RAM.
Since data in RAM can be modified, a program which writes to
itself can cause a system "crash' I. For this reason, a
program which attempts to alter itself must be changed in
order to operate properly when copied from ROM to RAM.

Remember, it is assumed that all cartridges are 16K. If
you have an 8K cartridge, you must change the ending address
used with the monitor from $COOO to $AOOO. It is also assumed
you have copied and run the cartridge, reset the computer,
and are looking at a computer screen which reads 30719 BYTES
FREE. In another words, it is assumed that you have read and
understood the previous chapter!

First, SYS 49152 to enter the ML monitor and use the IM I
command to change address $0001 from $37 to $36 (flip-out
BASIC).
$2000:

The crashed version must be transferred from $8000 to

T 8000 COOO 2000

Next, load the original version from disk:

L I I program name' 1,08

After loading the original
compare the two versions:

version, use the 'CI command to

C 2000 5FFF 8000

PPMII ADVANCED CARTRIDGE PROTECTION PAGE 170

This time 1et ' s assume some addresses were reported as
changed in the 'crashed ' I version. This means the programI

wrote to itself, and it probably also contains some KERNAL
and BASIC switches. Write down the addresses reported and use
the 'H ' command to search the code from $8000-COOO for the
code which altered the reported addresses. FIGURE 8 is an
example of a simple store to a series of addresses. This type
of addressing is called ABSOLUTE addressing.

FIGURE 8

8E69 A2 00 LDX #$00

8E6B 8E 00 82 STX $8200

8E6E 8E 57 86 STX $8657

8E71 8E 00 90 STX $9000

In this example, the compare would have returned
addresses $8200, $8657 and $9000 as being different from the
original program. All of these addresses would have been
different because address $8E69 loads the X-register with a
$00 which is then stored at $8200, $8657, and $9000. If the
program had been in ROM, no changes would have occurred at
these addresses (or rather, the RAM under the ROM would be
altered). Since the program was in RAM, the addresses were
changed, and the program 'c1"ashed' I. In this example, youI

should use the 'H ' command to locate the area of the program
which altered the three reported addresses. Since this type
of addressing can use the Accumulator, X-register, or
Y-register, you must search the code for all three types.
FIGURE 9 shows how you would search for the code that altered
address $8200.

FIGURE 9

H 8000 COOO 80 00 82 for STA $8200

H 8000 COOO 8E 00 82 for STX $8200

H 8000 COOO 8C 00 82 for STY $8200

The use of these IH I commands on the code in FIGURE 8
would have returned address $8E6B. Since the example used the
X-register, only the search which specified the X-register
would have returned the address $8E68. The other two searches
wou1dn 1 t have reported anything. Using the same technique,
the search for addresses $8657 and $9000 would have returned
the addresses $8E6E and $8E71 respectively.

After locating the addresses, use the IM I command to
replace the code with NOP's ($EA). FIGURE 10 shows how FIGURE
8 should be altered so the program can run in RAM.

PPMII ADVANCED CARTRIDGE PROTECTION PAGE 171

FIGURE 10

8E69 A2 00 LOX #$00
8E6A
-8E73 EA NOP

Remember, always work on the version of the program
which resides at $8000. The version at $2000 has a $55 at the
first byte(due to the RESET), as well as altered code caused
by the writes. Also, if you repair and save the version at
$2000, the program will not run because it will load back in
at $2000, instead of $8000 where the cartridge normally
operates.

After making the changes, be sure to save the code from
$8000-$COOO. Try running the cartridge by typing G FCE2 from
the ML monitor (same as SYS 64738 from BASIC). If you have
properly repaired the addresses and removed any KERNAL calls
and BASIC switch-ins the cartridge should run. If not, there
is one type of protection which is extremely effective, yet
doesn't always modify program code. This type of protection
checks CIA TIMER A (more on this later).

FIGURE 8 altered the program by directly changing the
values in memory. FIGURE 11 uses a technique to store values
in memory with an addressing technique called indexed
addressing. This type of addressing uses the X- or Y-register
to hold a INDEX (OFFSET) value which is added to a BASE
address to arrive at the actual address to be altered. FIGURE
11 shows two examples of how indexed addressing can be used.

FIGURE 11

(A)

9000 A9 00 LDA #$00
9002 AO 05 LDY #$05
9004 99 00 81 STA $8100,Y

(B)

9000 A9
9002 AO
9004 99
9007 C8
9008 DO

00
05
00

FA

81

LDA
LDY
STA
INY
BNE

#$00
#$00
$8100,Y

$9004

This type of addressing can be used in two ways. In
FIGURE 11a a single address ($8100+$05=$8105), is altered
when line $9004 is executed. This is similar to FIGURE 8
because only a single address is altered by the statement.

PPMII ADVANCED CARTRIDGE PROTECTION PAGE 172

FIGURE llb produces a very different result when it is run.
It uses two extra instructions to erase an entire section of
memory - BNE and INY. Line $9004 stores. a $00 byte to an
address calculated by adding Y to $8100. By increasing Y
step-by-step with the INY (INcrement Y) instruction and
executing line $9004 repeatedly~ we can write to many
addresses with one piece of code. When the V-register returns
to $00 (remember, a single byte can only hold values from $00
to $FF; if you try to exceed $FF it 'wraps around' back to
$00) the Branch if Not Equal to zero instruction fails and so
the program continues past this point. This net result is to
write zeroes to locations $8100-$81FF~ erasing a whole
section of the program. It is fairly obvious when this
technique is used because a comparison will return a large
consecutive series of altered addresses, using containing the
same value.

Use the 'H' command as in our previous example to locate
the address or addresses which alter the code, and then
replace the stores with NOP's. In FIGURE lla, you would
replace addresses $9004-$9006 with $EA. In FIGURE llb
addresses $9004-$9009 should be replaced with $EA. In
general~ try to change as little as possible. Replacing
self-modifying code with NOP's and removing any KERNAL calls
or BASIC switch-ins should allow these examples to be run in
RAM.

The next type of addressing is called indirect~ indexed.
This type of addressing uses a VECTOR (POINTER) to hold the
actual address to be altered. The vector must be stored as
two consecutive bytes in zero page, in low-byte, hi-byte
format. FIGURE 12 shows an example using this type of
addressing.

FIGURE 12

802E A2 1F LOX #$lF Fill byte / page number
8030 AO 00 LOY #$00 Lo-byte of start address
8032 84 88 STY $88 Lo-byte of vector
8034 A9 80 LOA #$80 Hi-byte of start address
8036 85 B9 STA $B9 Hi-byte of vector
8038 8A TXA Use $lF as filler byte
8039 91 B8 STA ($B8),Y Store filler to RAM
803B B1 B8 LOA ($B8), Y Read back from ROM/RAM
B030 91 B8 STA ($B8),Y Store filler/code to RAM
803F 88 INY Next byte
8040 00 7F BNE $8039 Continue if page not done
8042 E6 B9 INC $B9 Next page
8044 CA oEX Reduce page number
8045 10 F2 BPL $8039 Loop back if not done
8047 A5 01 LOA $01 Get current memory map
8049 29 FE AND #$FE Turn off BIT 0 (LORAM)
804B 85 01 STA $01 Replace map

PPMII ADVANCED CARTRIDGE PROTECTION PAGE 173

FIGURE 12 is actually an example of two protection
techniques. The first is the use of indirect, indexed
addressing to disguise the address of the area of memory
being changed. The second involves transferring the ROM to
RAM and switching out the ROM in order to run the program
from RAM. This routine has a couple twists, so take it
slowly. The routine starts by setting X to $lF, which serves
a dual role as a filler byte and page counterNext, Y is set
to $00 for indexing purposes. Addresses $B8 and $B9 are set
up to contain a pointer to the start of the area to be
written to, in this case $8000. Then X ($lF) is transferred
to A to be used as a filler value. This completes the set-up
for the routine, which then enters its main loops starting at
$8039. Leaving the code from $8039 to $803E aside for a
moment, the code from $803F to $8046 controls the looping. We
step through each byte using Y, as in the previous example.
In this case we are going to write multiple pages, so at the
end of a page we increase the high-byte of the pointer ($B9),
decrease the page number (X) and check to see if welre done
yet. If so we reconfigure memory as discussed later.

Now let's look at the tricky part: the LOA and STA' s • We
have to bear in mind that there are two possible cases,
namely that the program is running in RAM or in ROM. This
routine either erases the RAM copy and crashes or downloads
the ROM copy to RAM and starts it. Let1s take the RAM case
first. Initially, the first STA will place a $lF at $8000.
The $8000 is determined by taking the CONTENTS of $B8-B9
(zero page vector = $8000) and adding the current value of Y
($00). Next, A will be loaded back from $8000, getting the
$lF back. Then this value will be stored out to $8000 again
by the second STA. Since A still has $lF in it, when we loop
back to $8039 after incrementing Y, weill be storing $lF in
$8001. This process continues for a while, but notice that
the routine itself is in the first page after $8000. Soon Y
will reach $2E and it will begin writing over itself at
$802E. This will crash the RAM copy.

Now let1s take the ROM case. First of all, remember that
all stores will still take place in RAM but now the load will
come from ROM. The first time it reaches $8039 the $lF will
go into RAM $8000, but the LDA at $8038 will pick up the
value from ROM $8000, say $09. Since it then stores A back to
RAM $8000, our first byte of ROM program will be transferred
to RAM! Incrementing Y and looping back, we will then store
the $09 in RAM $8001, but then we pick up the correct ROM
$8001 byte and store it to RAM. Eventually, we will transfer
all of the ROM copy to RAM ($00 to $lF = 32 pages = 16K).
Since no problems are encountered, the loops will eventually
finish and the code at $8047 will be executed.

This code will turn off BIT 0 of address $0001 (LORAM
line). If both the EXROM and GAME lines are grounded, as they
will be in a 16K cartridge, turning off LORAM will flip out
the cartridge area from $8000 to $9FFF, but will leave the
cartridge ROM at $AOOO-$8FFF flipped-in (replacing the BASIC
ROM). Thus, if you1re working with a 16K cartridge, it's

PPMII ADVANCED CARTRIDGE PROTECTION PAGE 174

possible that the lower half could be running in RAM and the
upper half could be running in ROM! So how do we modify this
routine so a copy completely in RAM will work? Simply Nap
addresses $8039 and $803A to prevent overwriting (as well as
changing any BASIC switch-ins and KERNAL calls).

The final type of addressing is called indexed,
indirect. This type of addressing uses zero page vectors like
indirect, indexed. However, the contents of the X-register is
used for indexing instead of the V-register. Even more
important, in this type of addressing the indexing takes
place BEFORE the indirect access. The index might be used to
select from a table of vectors, and then the selected vector
is used as a pointer for indirect access. FIGURE 13 is an
example of indexed, indirect addressing.

FIGURE 13

8040 A9 00 LOA #$00 Lo-byte
8042 85 82 STA $82
8044 A9 80 LOA #$80 Hi-byte
8046 85 83 STA $83
8048 A2 03 LOX #$03 Select vector no. 3
804A A9 00 LOA #$00
808C 81 FB STA (82,X) Store indirect

In FIGURE 13, the Accumulator is stored to a location
specified by the contents of addresses $85-$86, since
$82+$03=$85. Thus the actual vector to be used indirectly is
stored at addresses $85 and $86 in zero page, not $82 and
$83. This type of addressing can be used to erase a single
byte or entire section of memory. It is an extremely rare
type of addressing which has yet to found in any cartridges,
but it is useful for certain types of control processing in
which you need to be able to select a particular vector from
a list of vectors.

Some cartridges use the 64 1 s CIA TIMERS to determine if
a program is running in RAM or ROM. Each of the two 6526
CIA's is an I/O chip that contains 16 I/O lines, 2 linkable
timers (A and B), a 24-hour clock with a programmable alarm,
and an 8 bit shift register for serial I/O. Our example will
use TIMER A of CIA #1. It is located at $DC04-$DC05 but is
controlled by location $DCOE.

When the 64 is turned on, TIMER A of CIA #1 will be
reset, that is, it will be set to zero and stopped. During
normal initialization, the timer is set running again. When a
cartridge is present on power-up, however, normal
initialization is bypassed and the cartridge takes over. If
desired, the cartridge can purposely NOT start the timer
running. Later on, it can check the timer to see if it has
been running (by whether it is nonzero) and crash the program
if it is. When you go through normal initialization and load
your copy from disk, the program will not work, since the

PPMII ADVANCED CARTRIDGE PROTECTION PAGE 175

timer has been running. This is a extremely effective way of
determining whether the program was started from cartridge.
To defeat this type of protection you must use one of the
auto-start boots at the end of this chapter. The boot
programs store the value $00 at address $DCOE which resets
the timers t making the program think the computer was just
turned-on. In many cartridges that use this t it is the only
type of protection. If you find a cartridge which doesn't
alter any code but still won't runt try initializing the CIA
TIMERS. DON'T INITIALIZE THE CIA TIMERS FOR EVERY CARTRIDGE.
It actually prevents some cartridges from running. Only use
it as a last resort.

The next type of cartridge to examine is the ULTIMAX
cartridge (MAX for short). This cartridge was originally
manufactured for the Commodore ULTIMAX computer, which was
never distributed in the U.S. This cartridge reconfigures the
64's memory as shown in FIGURE ld in the last chapter. This
cartridge grounds the GAME line, which flips out the KERNAL
and the cartridge area from $8000-AOOO. Most MAX cartridges
are 8K and operate in the KERNAL area ($EOOO-$FFFF).

It takes a special technique to copy a MAX cartridge.
Insert the cartridge into the expander board and turn ON the
switches in the following order: POWER (sw4 on CB board);
EXROM (sw2 on CB); and then GAME (swl on CB). If the switches
are operated in any other order the computer will lock up and
you'll have to start over. Once the switches are activated,
use the ~M" command to flip-out the BASIC ROM. The MAX
cartridge will appear in memory from $AOOO-$BFFF. Keep in
mind that the cartridge will not run from this area, it only
resides here when the computer is powered-up. In order for a
MAX cartridge to properly relocate and run when loaded, a
special routine must be added to the end of each MAX
cartridge. A routine that will relocate and run a MAX
cartridge is shown in FIGURE 14.

FIGURE 14

COOO A9 36 LDA #$36
C002 85 01 STA $01 Switch out BASIC ROM
C004 AO 00 LDY #$00 Initialize lo-bytes:
C006 84 FA STY $FA Copy from address
C008 84 FC STY $FC Copy to address , , , ,' ,COOA 84 FE STY $FE

COOC A9 AO LDA #$AO

COOE 85 FB STA $FB From $AOOO

COlO A9 20 LDA #$20

C012 85 FD STA $FD To $2000

C014 A9 EO LDA #$EO

C016 85 FF STA $FF And $EOOO

C018 Bl FA LDA ($FA)tY

COlA 91 FC STA ($FC),Y Copy a byte

I ,C01C 91 FE STA ($FE),Y , ,
COlE C8 INY Next byte
C01F DO F7 BNE $C018 Done with page?

PPM I I ADVANCED CARTRIDGE PROTECTION PAGE 176

C021
C023

E6
E6

FB
FD

INC
INC

$FB
$FD

Next page

C025 E6 FF INC $FF
C027
C029
C02A

DO
78
A9

EF

35

BNE
SEI
LOA

$C018

#$35

Done with copying?
Disable IRQ interrupt

C02C 85 01 STA $01 Turn off ROMs
C02E 6C FC FF JMP ($FFFC) Activate MAX reset

The code in FIGURE 14 must be added to the end of every
MAX cartridge. The routine relocates the cartridge to $EOOO
and $2000. MAX cartridges require an image of the program to
appear at $2000 or they will not run. To add the relocate
routine to the end of a MAX cartridge, operate the switches
as outlined above and use the monitor to assemble the code
shown in FIGURE 14. The relocate routine should be assembled
starting at $COOO. Once the routine is entered into memory
after the MAX cartridge, save the memory from $AOOO-$C031.
This will save the cartridge and the relocate routine. You
can save the code from $COOO-$C031 as a separate file to use
later if you need to copy another MAX cartridge. Once the
cartridge and relocate routine are saved, it can be activated
with a SYS 49152 or JMP $COOO.

There are a few MAX cartridges which are protected with
a KERNAL switch-in. Once the cartridge is relocated the
program attempts to switch in the KERNAL by turning on bit 1
of address $0001 (HIRAM). To check for this type of
protection in a MAX cartridge, use the IH I command to search
the code from $AOOO-$COOO for a store to address $0001.

H AOOO COOO 85 01

This command hunts for STA $01; you may have to look for
STX and STY too. If you find an instruction where the value
stored has bit 1 on (e.g. $E7) you must replace it with a
value that has bit 1 off (e.g. $E5). This is the only type
of protection that has ever been found in a MAX cartridge to
date.

This concludes the discussion of cartridge protection
and how to remove it. The next sections will cover
auto-boots, and special types of cartridges.

PPMII ADVANCED CARTRIDGE PROTECTION PAGE 177

AUTO-BOOTS

We will cover two types of auto-boots: one which loads a
single program and one which loads up to four separate
sections of code. Either of these boots can be built using
the program called SUPERBOOTER on the accompanying disk.
FIGURE 16 is a disassembly of a typical single program boot
built by SUPERBOOTER.

FIGURE 15

02A7 20 44 E5 JSR $E544 :CLEAR SCREEN
02AA A9 01 LOA #$01
02AC 80 20 DO STA $0020 :BOROER COLOR
02AF 80 21 DO STA $0021 :SCREEN COLOR
02B2 A2 80 LOA #$80
02B4 8E 84 02 STX $0284
02B7 86 38 STX $38
02B9 20 53 E4 JSR $E453 :RESTORE BASIC VECTORS
E2BC A9 01 LOA #$01
02BE A6 BA LOX $BA :CURRENT DISK NO.
02CO A8 TAY
02C1 20 BA FF JSR $FFBA
02C4 A9 06 LOA #$06 :6 LETTER NAME
02C6 A2 FA LOX #$FA :AT $02FA
02C8 AO 02 LOY #$02
02CA 20 BO FF JSR $FFBO
02CO A9 00 LOA #$00
02CF 20 05 FF JSR $FF05 :LOAO
0202 20 E7 FF JSR $FFE7 :CLOSE ALL CHANNELS
0205 86 A2 STX $A2
0207 A5 A2 LOA $A2
0209 DO FC BNE $0207
020B 80 OE DC STA $OCOE :INITIALIZE CIA TIMERS

020E EA NOP
-02F2

02F3 A9 36 LOA #$36 :SWITCH-OUT BASIC ROM
02F5 85 01 STA $01
02F7
02FA

6C
58

FC FF JMP ($FFFC) :JUMP
: X

TO RESET VECTOR

02FB 58 : X
02FC 2E
02FO 4F : 0
02FE 42 : B
02FF 4A : J

0300-0301 8B E3 :NORMAL BASIC ERROR VECTOR
0302-0302 A7 02 :SET BASIC WARM-START

:VECTOR TO JUMP TO $02A7

PPM I I ADVANCED CARTRIDGE PROTECTION PAGE 178

As you can see, the boot in FIGURE 15 initializes the
CIA TIMERS (STA $DCOE). This must be added with a ML monitor
after the boot is built. SUPERBOOTER will build a boot for a
cartridge or a SYS address. This boot will auto-start because
addresses $0302 and $0303 (BASIC warm-start vector) are
modified to jump to the beginning of the autoboot at $02A7.
Normally, the vector is $A483, but it can be modified to jump
to a ML program. In order to auto-start, the boot must be
loaded with LOAD"boot name " ,8,1. After the boot is
activated it restores the warm-start vector by running a
subroutine at $E453.

In order for this boot to work properly, the main
program must be saved in the XX.OBJ name format. The boot
program should be saved with the full program name. For
example, if you had a cartridge called"Cartridge Backer " ,
the boot would be called 'Cartridge Backer" and the mainI

program would be called 'CB.OBJ ' I.I

SUPERBOOTER will ask you for the name of the program,
the two letters in the XX.OBJ file name, the number of boots,
whether you want BASIC switched out, and whether the boot is
for a cartridge or a SYS start. If you wish to SYS a
particular address it must be entered in decimal. Also, if
you wish to initialize the CIA TIMERS, you must load the boot
with a ML monitor and add the store to address $DCOE as shown
in FIGURE 15. Once you have answered SUPERBOOTER's questions,
it will build a boot and save it to a disk. It is assumed
that you are saving the boot to the disk that contains the
main program. If you are using SUPERBOOTER to build a boot to
load multiple files, the sections of the program must be
saved as XX.OBJA-XX.OBJD.

The final area which will be covered is cartridges which
are larger than 16k and special ROM types. Cartridges which
are larger than 16K use a technique known as bank-switching
or bank-selection. The cartridge uses a chip called 74LS74 to
I 'flip" ROMs in and out as needed. The usual addresses for
the selection register is $DCOO or $DFFF. The bank-selection
technique allows a cartridge to be used in conjunction with
the 64's ROMs.

A few MAX cartridges contain special ROMs which cannot
be read properly unless the data is read several times with a
monitor. You can identify this type of ROM by reading the
memory at the beginning of the MAX cartridge several times.
If the data that is read is different each time, the
cartridge contains these ROMs. If you have this type of
cartridge, you must read the data until' it doesn't change
(usually 10-15 times). If you don't read the data several
times, when you save the cartridge you will get all $FF's.

This concludes the basic techniques for copying and
removing the protection from cartridges. It can take from a
few minutes to several hours to find and remove the
protection from a particular cartridge. The CARTRIDGE BACKER

PPMII ADVANCED CARTRIDGE PROTECTION PAGE 179

system available from CSM SOFTWARE INC. will automatically
remove the protection from 99% of all cartridges, build an
autoboot, and save everything to disk in less than 90
seconds! The Cartridge Backer system will save the
experienced programmer time by locating KERNAL calls, BASIC
switch-ins, writes to RAM, indirect addresses, etc. The
system includes the software on disk, an expander board, and
a user's manual. The software package is entirely menu
driven, making it very easy to use. If you ha~e access to a
number of cartridges, the CARTRIDGE BACKER system is well
worth the investment of $54.95

PPMII ADVANCED CARTRIDGE PROTECTION PAGE 180

DECRYPTION

Here's an experience most of us can relate to: You've got a new
program that you would like to investigate. You load it for the
fir s t time and fin d t hat i tis an \' aut 0 - load 'I pro gram. You 1et
it go through its protection scheme, you listen and you watch
carefully. The program runs. Now you are ready to 'dig in'.
Since the program autoboots, you use your machine language
monitor to load the program into memory (modifying the autoboot
if necessary - see the chapter on autoboots). You put your ML
monitor into Interrogate mode (or Memory mode) and expect
perhaps to see some code. Hmmm ••• nothing looks familiar. Must
be in machine language. You now switch to D(isassemb1e) in
order to check the machine code and find to your surprise that
99% of the program looks like garbage!! The chances are that
you are looking at a program which has been encrypted or one
that uses undocumented opcodes.

Why w0 u1d s 0 me 0 new ant t 0 \' cod e II the i r cod e? The an swer i s
obvious - they don't want you to analyze it and figure out how
to disable the protection scheme. The purpose of this chapter
is to review some methods of program encryption and how to get
around them. For our purposes in this chapter, whenever we
refer to coded, encrypted or undocumented opcodes you may
consider them all to mean the same technique.

One thing is certain; there must be some valid machine language
somewhere. The C-64 doesn't know how to decode someone's
program and therefore there must be a routine which performs
the decoding somewhere in memory. This is the obvious place to
begin your quest.

You may wish, at this point, to try a different approach. Why
not simply reset the computer after the program has
self-decoded (or gone past the undocumented opcodes) and then
begin your examination? This may work in some cases, but most
of the time a number of things have occurred during the
decoding process which you are unaware of. A clever programmer
will have wiped out all traces of the decoding before you have
even gotten this far. For example there may be values stored on
zero page or under the Kerna1 which are used as the basis for
an indirect jump. True, if you are young you may have several
years to spend carefully tracing the program, instruction by
instruction, looking for these values and finding where the
'extra stuff' is hidden. Anything can be broken given enough
time and energy but isn't there an easier way? Many times the
answer .i s yes.

First of all, many program authors feel that since the program
is encrypted or uses undocumented opcodes it will be impossible
for anyone to figure out what is happening. They often leave a
trail which is very easy to follow. Here is a method for
dealing with coded programs which has worked often on programs.

PPMII DECRYPTION PAGE 181

1).	 Use your monitor to load the autoboot program.

2).	 Once you have determined that it is an encrypted or coded
program start over and let it load normally through its
autoboot routine (from BASIC).

3).	 Once the program is up and running, we assume it is past
the encoded portion. Use your RESET button to get control
of the computer and ~fire Upll your ML monitor. (Note:
HESMON is nice here since it is a cartridge monitor. You
still need a cartridge switch installed or an expander
board. See Vol. 1 of the PROGRAM PROTECTION MANUAL from
CSM)

4).	 Beg;n by looking for calls to Kernal routines. We are
assuming here that you know what to look for. Again, Vol. 1
of the PROGRAM PROTECTION MANUAL has thoroughly explained
this.

5).	 Locate the protection scheme in the decoded program. List
out the code around this point on your printer if you have
one.

6).	 Figure out how to beat the protection scheme. Often this
will amount to changing a CMP #$32 to CMP #$30 or some
similar change. If more elaborate changes are necessary you
have to work harder.

The trick now is to figure out where in the original (coded)
program the changes must be made. We must make some assumptions
here. Most coded programs have a l-to-l relationship with the
decoded program. In other words, the coding scheme changes each
byte according to some pattern (discussed later), but doesn1t
change the byte1s position in the program. If this assumption
is true, you can count down the coded program and locate the
exact byte or bytes you need to change. Here is a more specific
example:

Suppose that the load address of the main program (encrypted)
is $1000. You have located the protection scheme and you decide
that you need to change the byte at address $2356 from $32 to
$30 (as in CMP #$32). You need to figure out which byte in the
coded program corresponds to byte $2356 in the decoded program.
Since there is $1356 bytes difference ($2356-$1000=$1356), you
simply go $1356 bytes into the disk based version of the
program to locate the corresponding position in your coded
program. Thus the byte at $1356 from the beginning of the
program needs to be modified. We now have a new problem. Since
we are looking at a coded byte, how do we know what to replace
it with so that it will decode into a $30 and make the program
bypass its protection scheme?? If you have no idea of how the
encryption works you will have to use a bit of trial and error.
Let me share a personal experience that may give you some
insights.

PPMII	 DECRYPTION PAGE 182

I reached the exact point described above once while
investigating an encrypted program. At the time I didn't know
anything about coding and decoding. Some thoughts on this will
be discussed a bit later. I did know that at worst I had a 1 in
255 chance of guessing the value that would decode into what I
needed ($30). I was very sure that all that needed to happen
was for a CMP #$32 to become a CMP #$30. I had invested hours
on the program and decided to "go for it". I was willing to try
all 255 possibilities. Using a track and sector editor I
counted down the bytes on the disk itself until I found the one
to change. What happened next was pure luck. I accidentally
changed the byte on the disk which contained the machine code
for the CMP instruction itself instead of its operand, the $32.
I crossed my fingers as the autoboot began. The program booted
successfully with no banging - no bad blocks. It worked! I had
gotten lucky. I could have spent the rest of the day trying 255
possible values, hoping one would work.

In the above example the critical part was locating the area on
the disk that must be modified. When the code was located on
the disk the 'lucky' change that was made actually turned out
to be the proper place to change the code. By changing the CMP
instruction we have many more possibilities of finding a
ins t r uct ion t hat wi 11 w0 r k \' by gues sand by go s h 'I. I n m0 s t
instances it is more desirable to change either the CMP or the
BNE (SEQ) instruction than the value itself (#$32).

I am sure we have all had similar experiences where through
some lucky happening we have succeeded in our quest. We can't
rely on luck however and so an understanding of how a program
can be coded will allow you to analyze the decoding routine and
figure out how to make changes which will work.

EXCLUSIVE-OR

There is a 6502/6510 machine language instruction known as EOR
or exclusive-OR. It is generally used in calculating checksums
(as well as other purposes). In the context of coding schemes
the EOR instruction can be of great value. The next few
paragraphs are a review of the EOR and its use in program
protection.

Remember, whatever system we use to code the information must
be reversible. We have to be able to g~t back to our original
program from the coded version. The EOR instruction is useful
here because it performs a reversible change on a given byte.
Let's look at a couple of examples.

PPMII DECRYPTION PAGE 183

You are probably already aware of the definitions of OR and AND
as 'logic operators'. Below are 'truth tables' for OR, AND and
EOR:

OR Truth Table AND Truth Table EOR Truth Table

o OR
o OR
1 OR
1 OR

0
1
0
1

= 0
= 1
= 1
= 1

o AND 0
o AND 1
1 AND 0
1 AN D 1

= 0
= 0
= 0
= 1

o EOR
o EOR
1 EOR
1 EOR

0
1
0
1

= 0
= 1
= 1
= 0

As you can see, OR and EOR are similar. They differ only in the
1-1 value. Now let's try using the EOR operation between two
hex numbers expressed in binary. As an example we will perform
$A7 EOR $6C:

$A3 = 10100111
$6C = 01101100

$CB = 11 001 011

Check the EOR truth table in order to see how this result comes
about.

Now let's see what happens when we EOR the result $CB
(11001011) with $6C again:

$CB = 11001011
$6C = 01101100

$A3 = 10100111

But this answer is exactly what we started with - $A3!! In fact
this ~reversibility~ always happens. Thus EOR is an excellent
way of coding bytes in a way which is reversible. We would pick
a value to use as our \'coding value". In this case we have used
$6C. We would then perform an EOR operation between $6C and
each byte of the program. This would make the program look like
complete garbage. The beauty of the EOR operation is its
reversibility.

In order to get our program back again (decode it), we must EOR
each byte with $6C again. This will bring back the original
program, byte for byte.

This coding scheme is easy to understand and also easy to beat.
There are only 255 different values which could be used for the
~coding value'\ ($00 wouldn't change anything). This means that
a simple trial and error program should be able to find the
proper \'coding value" and reconvert the program into good code.

PPMI I DECRYPTION PAGE 184

Software protectors may use a more complex coding scheme than
this. The saving grace here is that the decoding routine itself
must be uncoded. There must be valid code in the program so
that it can begin executing. When you have found that a program
is coded you should be able to find good code right at the
beginning. Very likely this part of the program is the decoding
routine. These routines are usually very short and generally
re10catab1e. It is often possible to relocate the decoding
routine and execute it, causing it to decode the main program
without autobooting.

You .wou1d load the autoboot program into the computer and then
disassemble it. You may find the decoding routine. Analyze this
short routine and modify it so that it decodes but doesn't
execute the main program (i.e. change the JMP instruction at
the end of it). Now you can execute the decoding program,
causing the main program to decode but not to execute. You
should now be able to locate the protection scheme in the main
program and disable it. You can relocate the decoded program in
its proper place in memory and then begin execution at the
point specified at the end of the decoding routine. If you can
do it this way, you got off easy. Some clever protectors have
gone beyond this •.•

Several programs (SUPERBASE, for one) have elaborate coding and
decoding systems built into them. They are designed to drive
you nuts if you try to analyze them. Here's what you are up
against with these 'super coded' programs:

Naturally there will be an autoboot routine. These are easy to
analyze. In the case of coded programs, the decoding routine is
executed immediately after the main program loads.
Unfortunately, we now discover that many parts of the decoded
program have been modified or totally obliterated during the
decoding process. A careful examination of the autoboot routine
reveals that it only decodes part of the main program and then
transfers control to this newly decoded routine. Our next step
is to disable the transfer of control so that we can get a look
at the decoded routine. The obvious method would be to place a
BRK instruction into the autoboot routine at the point that it
was going to JMP to the main program. What we find is that 100
or so bytes of the main program have been decoded. Naturally we
are curious about this routine and begin a careful analysis of
the machine code. It is 'good code' in the sense that there are
no ???I S populating it. It is truly an executable machine
language routine. However, as we begin our analysis we are
getting the feeling that this routine is not an essential part
of the main program. The routine is running us through every
possible weird operation imaginable. We are ANDing, ORing,
SBCing, ADCing, CMPing, branching here and there based on
outcomes which are very easy for us to miscalculate. In other
words we are being asked to perform all sorts of wild
calculations and decisions perfectly. One mistake in one bit is
enough to send us off into oblivion.

PPMII DECRYPTION PAGE 185

It is painfully obvious that this routine is for us. Its
purpose is to drive us crazy. We find out after half an hour of
careful analysis that this routine decodes the next 100 or so
bytes of the program and then self-destructs. Oh no .•• here we
go again! More crazy calculations designed to drive us nuts.
The day is yet young - let's go for it .•• After another hour of
careful calculating we find that once again the purpose of this
second part is to decode the next section of code and then
self-destruct. And so on and so on •••• Hey, why not use the
machine language monitor to single-step through the routine
carefully? This is a good idea but not as simple as it sounds.
It is pretty easy to hang up the monitor when it is
single-stepping through the program and these little routines
are designed to do just that.

The moral of this little story is that a protection scheme can
be very well hidden in a program. Clever programmers are making
it much more difficult to find those KERNAL calls which check
the disk protection. The ~end of the rainbow~ is very far away.
Undoubtedly you will find that if you stop the program after it
has passed the protection scheme,
self-destructed. You won't find a

the protection scheme
trace of it left in

has
the

program.

Is this the end of the line? The answer is no. You have two
alternatives: 1) You can batten down the hatches and get ready
for a long haul. Here you plan to carefully analyze the
program, find the protection scheme and disable it. This could
be a big project. OR 2) Elsewhere in this book several
programmers discuss alternate methods - methods which may allow
you to u1ift~ a working copy of the program from memory. If you
can do this, you will avoid the problem of coded programs
entirely.

It is hoped that this discussion of encrypted programs has
given you some ideas as to what is possible in the area of
program encryption and what you might be up against if you try
to locate the protection scheme and disable it. Sometimes coded
programs are not difficult to beat. However, programmers often
have spent many hours creating routines for you to analyze
which are designed to give you nightmares. In any event, it is
worthwhile to spend some time analyzing coded programs. You may
find that you CAN 'break' some of them without losing your
sanity.

For all practical purposes it is easier to let the program load
into memory, decode itself and execute than it is to try to
decipher the encryption scheme. Lifting a program out of memory
will be covered in the next few chapters. After all, it is not
important how the working program got into memory. What is
important is that a working version of the program may usually
be "lifted" out of memory after it has passed all its "checks'i.

PPMII DECRYPTION PAGE 186

THE BACKDOOR APPROACH

Program protection has come a long way in the last year. We
have seen the introduction of non-standard sectors, extra track
and sectors, nibble counting, altered density bits, and much
more. Each new scheme results in the creation of a "99%
EFFECTIVE COPY PROGRAM" designed to defeat that scheme. We
later find that this copy program is only good until a new
protection scheme is developed. What all of this means is that
you are continually frustrated in your attempts to exercise
your lawful right to create an archival copy of your valued
software. It is our opinion that there is no 'perfect ' scheme.
Every program may be l'unprotected". The newer schemes may
require a little more investigation than others, but the result
is the same.

In thi s chapter, we wi 11 explore the ,. BACK-DOOR'\ approach to
"unprotecting 'l a program. We will analyze some of the more
recent schemes, and the ways to defeat them. The code we will
analyze is typical of that being used today. Often you will
find that the techniques explored in the PROGRAM PROTECTION
MANUAL VOLUME I are still being used, but the disguise is
better.

The theory behind the ~back-door~ approach is to capture the
code once it is in memory. We allow the program to run normally
and then reset the computer, with the thought that the error
checking will no longer be utilized once the program is in
memory. This saves us the trouble of tracing through some of
the more sophisticated protection schemes. Once the program is
in the computer's memory, the only thing we have to do is find
where the code is stored in memory and the proper entry point
to start the program. Up to now, this approach has worked
extremely well and most programs are still being captuted in
this manner. Recently, we have noticed a few \Icurves~ in the
back-door method. Programmers are now utilizing areas of memory
that up to now have been avoided, error checking is done once
the program is in memory, and programs are encrypted. In these
programs, we find that a combination of the "front and
back-door " is required to capture a program. We will illustrate
this process later in this chapter.

GETTING STARTED:

As stated earlier, the uback-door~ is meant to be a time-saving
technique. What we attempt to do is allow the program to load
in the normal fashion. Once the program is in memory and
running properly, we assume it has passed the protection
scheme. We now have the program code without protection. We no
longer have to be concerned about tracing down and defeating
the protection scheme. All that's left is to find a proper
entry point for the program. Before you attempt this procedure,
we recommend a bit of preparation and investigation. You may

PPM I I THE BACK DOOR APPROACH PAGE 187

find that tracing a one block boot program will reveal a
protection scheme. If this is all that is needed to lunprotect l
a program, then there is no need to use the ~back-door" method.
Don't be in a hurry when you begin your study of a program,
because you may miss something simple. We recommend that you
follow the steps below before you proceed to utilize the
IIback-door ll approach.

1).	 Record the starting addresses and program lengths for each
program on the disk you are examining. This will give you
an idea of what area of memory the program will occupy.
This will also help you determine which machine language
monitor should be used. When attempting to locate the
ending address, don't forget about the END OF PROGRAM LOAD
VECTOR at $OOAE. When you load a program into memory
through a machine language monitor or from BASIC, using M
OOAE will reveal the ending address (plus 1) of the program
that was loaded. Keep in mind that a RESET will erase this
address. Many disks directories have been altered to
prevent listing. Make a BACK-UP disk and alter the
DIRECTORY, so that you may get a proper listing. The P.P.M.
VOL I describes this procedure in depth.

2).	 Make a note of the track and sector location for each file
on the disk. If after examining a program, you find that
the necessary alterations could be made quickly on the
disk, this record could be a handy reference.

3).	 Examine the hBOOT~ or LOADER program first. Check your
directory notes to determine where the boot resides in
memory. Examine the program through a machine language
monitor in INTERPRET MODE (I). This should reveal the name
of the next program to be loaded. Make a note of the order
in which the programs are to be loaded.

4).	 Once you have determined the order of the program loads,
examine the ~boot~ program in DISASSEMBLY MODE with you
machine language monitor. Use the HUNT feature of your
monitor to search for KERNAL CALLS (FF ••), CMP#$30, and
CMP#$32. Trace the entire "boot~ program through
DISASSEMBLY MODE. If the protection does not appear to be
stored in the boot program, check the program that is to be
loaded next. Follow this same procedure until all files
have been examined.

5).	 If the program you are examining is stored in USER FILES,
you may find it easier to make the correction directly on
the disk. Begin your investigation on the disk with the
~boot~ program. You may find that the protection scheme is
stored in the first or second block of the boot. Use a
TRACK AND SECTOR EDITOR such as Di-Sector or Peek A Byte
that includes a DISASSEMBLY feature. Make a record of your
changes so that you may restore the disk to its original
condition, if the correction does not work.

PPMII	 THE BACKDOOR APPROACH PAGE 18a

6).	 When you examine a file through the DISASSEMBLY mode,
attempt to determine if the code is "ENCRYPTED-. If you see
a lot of 1?1 1 s in the DISASSEMBLY, the code is probably
designed to be modified when executed, or else contains
undocumented opcodes.

What we are attempting to do here is to determine if the Ufix"
will be an easy one. If the procedure described above does not
reveal the protection scheme, you are ready for the "back-door "
approach.

TOOLS AND TECHNIQUES:

We still find that 99% of the programs we llunprotect~ merely
require the right tools and techniques. If after examining a
program, we find that the error routine will require too many
hours to trace, we attempt to get the program once it is in
memory. In most cases, it becomes a matter of knowing when to
stop the program and how. If all goes well, all that's left is
to find a suitable entry point.

How and where you stop a program can be crucial to capturing
the code intact. Many of the protection schemes will program
the CBM80 COLD-START vectors to erase the code when a RESET
occurs. Refer to the section on INTERRUPTS for a detailed
explanation of the RESET process. Determining· if the program
you are working on utilizes this technique is rather easy to
discover. You need only fill memory with OOIS or (99 I s), run
the program from the original disk and perform a RESET once it
is in memory. If the screen fills with Igarbage l or locks up,
the program has probably been sent to a self-destruct sequence.
Other programs may not be so obvious. The program may appear to
perform a normal RESET, returning you to the normal blue
screen. Once the program has been loaded and your RESET has
been performed, load in HIMON to examine the code from $0801
through $BFFF. If you find repeated patterns throughout the
code, or a large section of BRK's (00), you can assume that the
program was altered through the COLD-START vector.

If you have a cartridge power switch such as the one described
in the PPM VOL I, or a cartridge board that allows you to
control the EXROM line, you may capture a program of this type.
Through the technique described below, we will attempt to
regain control of the computer without losing any of the
program code by a cold-start via the CBM80 and associated code.

If you are using the cartridge power switch, load the original
program in the normal manner. Once the program is in memory,
insert a cartridge-based machine language monitor, with your
cartridge switch OFF, and RESET your computer. This is the same
as grounding the EXROM line. Remove the cartridge monitor. At
this point, you should load a high monitor such as HIMON to
examine and save out the program code. Don't forget to flip out
BASIC to determine if there is any code stored in the RAM
beneath. Once you have saved out this section of code, we

PPMII	 THE BACKDOOR APPROACH PAGE 189

recommend that you repeat the procedure so that you may
determine if some of the program code has been stored from
$COOO through $CFFF. Load a low monitor, such as LOMON, to
examine this area of memory. Once you have saved out the code,
you must now find an entry point for the program.

To capture a program using an expander board, load the program
normally. Once the program is in memory, set your EXROM line to
LOW and RESET your computer. You will be returned to the
familiar blue screen. Set your EXROM line to high and examine
the code. For a detailed description of the effects of the
EXROM line, refer to the chapter on INTERRUPTS.

FINDING THE CODE:

When we choose the ~back-door~ for our approach, we are faced
with the problem of determining where the code is stored.
Before you load the program, you should clean-up as much memory
as possible through the use of a machine language monitor. We
recommend that you use a high monitor such as HIMON for this
procedure. Since this monitor resides at $COOO, you can
clear-up the memory from $0800 through $BFFF utilizing the F
command. Follow the procedure described below for this process:

1}.	 First flip out the BASIC interpreter by storing a 36 at
$0001. Using the M command at 0001, change the 37 to a 36.
This allows us access to the RAM under BASIC.

2 } •	 Using the F command, fill the memory from $0800-$BFFF with
$OO's. F 0800 BFFF 00. This will fill the memory with BRK's
($OO). Now when you load the program you are working on,
you will be able to determine where the code begins and
ends.

3).	 When the program loads, it will over-write the BRK's (00)
that we inserted. The end of code may be determined from
where the BRK's (00) begin again.

When you load the program and examtne it through your high
monitor, with the I command, you should be able to determine
where the code is stored in memory. The program code will
over-write the BRK's (OO's) that we inserted. Now when we
examine the code using the I command, we will find the end of
the code by searching for BRK's (00) that we inserted. It is
usually good practice to save out all of memory when examining
a program through the back-door. It will take two attempts to
do this. On our first attempt, we will load the program as
usual, perform the RESET, and load in HIMON. Since HIMON
locates at $COOO, we will be able to save out the program code
from $0801 through $BFFF. Don't forget to flip-out BASIC to
save out the RAM area beneath. Starting over again, load the
program in the normal manner, perform your RESET, and then load
in LOMON. LOMON resides at $8000. Now you may save out the code
from $COOO through $CFFF.

PPM I I	 THE BACKDOOR APPROACH PAGE 190

The first area of memory to be checked is $8000. Check this
area using the I command. If you see a CBM80 stored in this
area, you probably have a program that utilizes an AUTO-START
feature. This type of program will emulate a CARTRIDGE start
when the RESTORE key is pressed or a RESET is done. Use the M
command to examine the memory at $8000. The first two bytes at
$8000 contain the address of the cold start vector, stored in
low byte/high byte order. The next two bytes contain the
warm-start vector, which are also stored in low byte/high byte.
Then comes the ~CBM80~ itself. Once the program is in memory,
save yourself a lot of time by trying these vectors. Activate
the program with a GO to the warm-start vectors (G XXXX). If
all goes well, all you need do is find the beginning and ending
address of the program. Save out the code and activate with the
decimal equivalent for the WARM-START VECTORS (EX. If the
WARM-START VECTORS were $8E72, the decimal equivalent would be
SYS 36466). You may find that if the CBM80 warm-start vector is
used, pressing the RESTORE key once the program is in memory
will activate the program. Following is an example of what you
may see at $8000 using the Mfeature of your machine language
monitor:

.:8000 09 80 72 8E C3 C2 CD 38

.:8008 30 20 F7 82 BO 03 4C 30

09 80 - COLD START VECTORS - G 8009 WILL CAUSE A COLD START AT
$8009.

72 8E - WARM START VECTORS - G 8E72 WILL CAUSE A WARM START AT
$8E72.

C3 - C
C2 - B
CD - M
38 - 8
30 - 0

SYS 36466 (HEX 8E72) would execute this program after a load
with ,8,1.

For a detailed explanation of the CBM80, refer to the chapter
on INTERRUPTS in this manual and the PROGRAM PROTECTION MANUAL
VOL. I.

KERNAL STORAGE:

Many of the latest programs are now storing code to the RAM
from $EOOO through $FFFF. If you take a look at your memory
map, you will find that this is the KERNAL ROM area of the
operating system. As with BASIC, though, there is alternate RAM
underneath. A few more steps will be necessary to gain access
to this code. Programs that utilize this area of memory will
run normally when the proper entry point is found after RESET.
All seems well until you save out the code from $0800-CFFF,
power-down, reload, and start the program from the entry point
that you used when the original program was in memory. If you

PPMII THE BACKOOOR APPROACH PAGE 191

have experienced this problem, you may find that there is
additional code from $EOOO-$FFFF. Since we have found so many
programs lately using the RAM under the KERNAL ROM, we have
made this a part of our normal routine. It may require a few
extra steps now, but will save a great deal of time in the long
run. In order to access the code in this area, we must utilize
a program to transfer this code to another area of memory. The
program called MOVE KERNAL on your PROGRAM DISK will transfer
the code from $EOOO-$FFFF to $2000-$4000. To save out the code
in this area, follow the procedure described below:

1}.	 Load the original program from your disk and perform a
RESET.

2}.	 Load and execute LOMON. Clean-up the work space from
$1000-$4000, with F 1000 4000 00.

3}.	 Loa d "M0VEKE RNA LII (L II M0VEKE RNA LI', 08) fro m you r PRO GRAM
DISK. This program will be located at $1000. This program
will set the interrupt flag, which will prevent IRQl s from
occurring, and transfer the code stored under the KERNAL to
$2000 through $4000. Then it will clear the IRQ flag and
BRK to the monitor. To execute the program you would type G
1000. Using the I command, scroll through the code at 2000.
Savet his cod e wit h SilK ERN AL COD EII, 08 , 2000 , 4000 •

4).	 We will encounter a problem when the .IKERNAL CODE II program
is loaded back into memory. When loaded, KERNAL CODE will
locate at $2000-$4000, because we saved it out from that
area of memory. The program we are working on would expect
to find this code at $EOOO. We could write a loader program
to relocate this code, or we could do it the easy way. With
a track and sector editor, we can locate where the first
block of the KERNAL CODE program is stored on the disk. Go
to TRACK 18 and locate KERNAL CODE in the directory. Once
you locate that file, go to that TRACK and SECTOR. Byte 3
of that block will contain a 20, which is the high byte of
the load address. If we change this to EO, the program will
locate at $EOOO when it is loaded with ,8,1.

5).	 With the main section of code and the additional KERNAL
CODE section loaded into memory, you should now try your
entry point. If the program still does not function
properly, there is probably still some other code that must
be captured.

PPMII	 THE BACKDOOR APPROACH PAGE 192

FLIPPING-OUT BASIC WITHIN YOUR PROGRAM:

Before we look into other areas which may contain program code,
we should point out that some programs require that you
flip-out BASIC before the program will run properly.

To determine if you have a problem of this kind, load the
program code in and load a machine language monitor that will
not over-write the program. Use a monitor that allows you to
flip-out the BASIC interpreter (LOMON, LLMON, HIMON). Change
the 37 at $0001 to a 36, and try your entry point. If the
program runs properly, you will have to write a section of code
that will flip-out BASIC for you and then JMP to your entry
point. You may also use AUTOBOOT1 from your PROGRAM DISK. There
is a section in this program that will allow you to store a 36
at $01. If you prefer to do this within your program, follow
the procedure below:

1).	 Determine where there is space within your program code.
Scroll through the code using the 0 command, and search for
a small section of BRK's (00).

2).	 Once the area has been determined, input the following code
using the M command:

OAOO A9 36 85 01 4C 00 80

In our example, we have inserted the code at $OAOO. You would
store this piece of code wherever you have room. Our JMP was to
$8000. Your JMP would be to whatever entry point you are using.
The disassembly is as follows:

the DECIMAL equivalent for HEX $OAOO, which is where stored

OAOO A9 36 LOA #$36 - LOAD THE ACCUMULATOR WITH 36, WHICH
IS THE VALUE THAT MUST BE PLACED AT
$0001 TO FLIP-OUT THE BASIC
INTERPRETER

OA02 85 01 00 STA $01 - STORE THE 36 AT $01
OA05 4C 00 80 JMP $8000 - JUMP TO THE PROGRAM ENTRY POINT

($8000 IN THIS CASE)

To activate our example program, we would use SYS 2560. This is
we

our program to flip-out BASIC.

OTHER AREAS TO STORE CODE:

If you refer to your memory map, you will find that there are
many other areas of memory available for program storage. If
you have saved out the code from $0800-$CFFF and have followed
the procedure to access the code from $EOOO-$FFFF but still
find that the program will not execute properly, you may have
to experiment with saving out the code from these other
available memory locations. We'll pass along a few hints for
determining where the code may be stored.

PPMII	 THE BACKDOOR APPROACH PAGE 193

UNDER I/O DEVICES ($DOOO-DFFF)

Beside the Kerna1 and Basic ROM's, another area of memory which
has \'hidden'\ RAM under it is $DOOO-DFFF. This area is usually
occupied by the I/O devices (VIC, SID, CIA's) and color RAM.
The character ROM also occupies this area when it is switched
in. Beneath all of these, there is also 4K of free RAM,
accesslb1e only when a special memory configuration is chosen.
See the chapter on THE 6510 AND THE PLA for the details on how
this is done.

LOW MEMORY:

There are lots of little areas in low memory available for
storing protection values, especially if the program isn't
going to use RS-232, tape, etc. We recommend that you
investigate the program for a new entry point first. If this
fails, we suggest that you use an altered machine language
cartridge monitor that will not RESET so much of low memory. We
use a cartridge of this type here and have been able to capture
code in the CASSETTE BUFFER, and other areas of memory that
were RESET through the standard cartridge monitor. The
procedure for altering a cartridge monitor is explained
elsewhere in this manual.

WHEN TO STOP THE PROGRAM:

When to stop a program can be crucial in the "BACK-DOOR"
approach. We have encountered several programs of this type.
Experiment with your program. Try timing the program to
determine how long it takes to execute. Try stopping the
program just after it has loaded and done its error checking
but before it executes. Save out the code and try various entry
points. It may take several trys before you find the right spot
to stop the program. This can be time consuming, but it's still
better than spending all that money for a copy program that
probably won't work on the next program you purchase.

ENTRY POINTS:

This is the most difficult concept to teach. We can and will
give you suggestions on what to look for, but the key to
success here is experimentation. Through practice you gain
experience. This can be a time-consuming process. There are
some things that you should get in the habit of checking, but
often finding the proper entry point is a matter of trial and
error. Following is the procedure we use to locate an entry
point along with examples of what to look for:

PPM I I THE BACKDOOR APPROACH PAGE 194

SCREEN COLOR ENTRY POINT:

1).	 Load the original program and allow it to run normally.
Take particular notice of screen color changes. menu or
title screens. The first thing you should check for is a
re-start feature through the RESTORE KEY. This may be
determined by striking the RESTORE key after the program is
in memory and running. If this is included in the program.
check the code at $8000 for the CBM80.

2).	 Check for stores (STA) to border and background color with
the HUNT feature of your machine language monitor. Try H
0800 9FFF 8D 20 DO and H 0800 9FFF 80 21 00 (hunt for STA
$0020 and STA $0021). If these commands are found.
investigate the areas with your 0 command. You may only
have to go back to the LOA instruction that precedes the
STA to try your entry point. Remember. before we can store
the accumulator (STA), we have to load something into it.
This is where the LOA comes in. This should occur just
prior to the STA. The example below should give you an idea
of what to look for.

•• OAOO A9 01 LDA #$01 - COOE FOR THE COLOR WHITE
., OA02 80 20 00 STA $0020 - STORE WHITE TO BOROER COLOR

After the H 0800 9FFF 80 20 00, the memory address returned
would have been $OA02. When we disassemble the code in that
area we find the LOA at $OAOO. In this example we would try
a G OAOO.

3). Attempting a G immediately after an RTS (RETURN
SUBROUTINE), will probably not be successful, because the
second routine is probably part of a subroutine. Every
subroutine ends with an RTS. When the program encounters
this instruction, it will NOT know where to return to and
will probably ~crash4. When you find a section that looks
promising, scroll through the code with your 0 command to
determine if this section of code ends with an RTS. If it
does scroll up through the code until you find another RTS.
Just after that RTS is the beginning of this subroutine.
Instead of trying a G here, HUNT foi the section of code
that calls this subroutine. When this memory location is
returned from the monitor, scroll through this code as
described. This may be the place to enter. If we were to
find a section of code at $OAOO that included a load (LOA)
and store (STA) to border color (0020) that came between
two return subroutines (RTS), we would HUNT for the section
of code that called this subroutine (H 0801 9FFF 4C 00 AO
or H 0801 9FFF 20 00 AO). If, after the HUNT, we found this
call at $OBOO, we would try a G OBOO.

PPMII	 THE BACKOOOR APPROACH PAGE 195

FLIPPING-OUT BASIC'S INTERPRETER:

1).	 Another good place to try looking for an entry point;s at
a section of code that will flip-out the BASIC INTERPRETER.

2).	 Try H 0800 9FFF A9 36. We are now searching for a section
of code that will load the accumulator (LOA) with a 36. If
a memory address ;s returned, scroll through that section
of code to determine if a STA $01 follows the LOA
instruction. This is usually a good place to try an entry
point.

., 4000 A9 36 LOA #$36

.,40028501 STA $01

In this example, the memory address $4000 would have been
returned after the HUNT. In this example we would try a G
4000.

FILE LOAD ENTRY POINTS:

It is often possible to enter a program from a file load. One
of the last programs to be loaded in game programs is usually
the top scores file. These are usually easy to spot in the
program through the I command. Programs such as these are
usually called something like SCORE, HIGH, etc .• If you cannot
locate a file of this type, try loading the last file that was
listed on the directory.

1).	 Attempt to identify the file name through the I command.

2).	 Using the 0 command, locate where the file is being opened
and try a G at that section of code.

.,193B A9 01 LOA #$01

.,1930 A2 3F LOX #$3F

.,193F AD lA LOY ISlA

• , 1941 20 BO FF JSR $FFBO

.,1944 20 CO FF JSR $FFCO

In this example we are setting a file name and opening a
file. We would attempt a G 193B in this example.

TITLE SCREEN OR INSTRUCTION MENUS:

Use your I command to locate a section of code that contains
title screen or menu options. Once located use your 0 command
to scroll through the code. You will usually find various JMP
(JUMP) instructions within this code. Investigate these areas
for possible entry points. Try the G command at each JMP. This
is where luck may lend a hand.

PPMII	 THE BACKOOOR APPROACH PAGE 196

FINAL COMMENTS ON ENTRY POINTS:

The suggestions offered here should give you an idea of where
to begin, but as we stated earlier, experience is the best
teacher. Do not attempt an entry point within an area that is
littered with question marks (?). This type of code is often
data, such as graphics code, that cannot be interpreted by the
monitor. Trying a G in an area of this kind will usually
lock-up your computer. Look for your entry point in solid areas
of code. Before attempting an entry, write down the address you
are trying. If it works, you may forget the address and spend
two hours trying to find that spot again.

Don't be afraid to try a spot that looks promising. The only
thing you can lose is a little time.

BACK AND FRONT DOOR TECHNIQUES

Many of the newer schemes will not only check for a specific
value, but will store the values returned from the error
channel within the program. This code is then recalled and
utilized for proper program execution. The value being checked
could be a standard error, a non-standard sector, or whatever
the programmer has stored on the disk and will later check for.
A scheme of this type presents two problems. First we must find
the area where the code will be stored and store the necessary
values. Our second task is to keep the program from overwriting
the values we stored with the new values that will be returned
through the error-checking. We will try to make this clearer
through the example that follows. Although this example is
checking for an error 21, your program could be checking for
other values. In the interest of space, the entire section of
code will not be presented here. We have only included the code
that is of interest to us.

ORIGINAL CODE:
CC26 4C B1 2C JMP $CCB1 - JUMPS TO THE SECTION OF CODE THAT

WILL LOAD AND MANIPULATE THE VALUES
RETURNED FROM THE ERROR CHANNEL

CC29 EA NOP - WILL BE CHANGED TO A 32 AFTER THE
ERROR CHANNEL IS CHECKED

CC2A EA NOP
CC2B EA NOP
CC2C EA NOP
CC2D EA NOP - WILL BE CHANGED TO A 31 AFTER THE

ERROR CHANNEL IS CHECKED
CC2E 20 32 37 JSR $3732
CC31 85 FB STA $FB
CC33 8E AB CC STX $CCAB
CC36 8C AC CC STY $CCAC
CC39 A9 00 LOA #$00
CC3B 20 BD FF JSR $FFBD - SET FILE NAME
CC3E A9 OF LOA #$OF - DECIMAL EQUIVALENT OF 15 - THE

ERROR CHANNEL IS BEING OPENED IN
THIS SECTION OF CODE (15,8,15)

PPMII THE BACKDOOR APPROACH PAGE 197

CC40 A2 08 LOX #$08 - DECIMAL 08
CC42 A8 TAY - WILL SET Y REGISTER TO 15
CC43 20 BA FF JSR $FFBA - SETS LOGICAL 1ST AND SECOND ADDRESS
CC46 20 CO FF JSR $FFCO - OPEN A LOGICAL FILE
CC49 A9 01 LOA #$01
CC4B A2 A2 LOX #$A2
CC4D AO 2C LOY #$2C
CC4F 20 BD FF JSR $FFBD - SET A FILE NAME
CC52 A9 05 LOA #$05
CC54 A2 08 LOX #$08
CC56 A8 TAY
CC57 20 BA FF JSR $FFBA - SETS LOGICAL 1ST AND SECOND ADDRESS
CC5A 20 CO FF JSR $FFCO - OPEN A LOGICAL FILE
CC5D
CC60

20
A2

CC
OF

FF JSR
LOX

$FFCC
#$OF

- CLOSE I/O CHANNELS

CC62 20 C9 FF JSR $FFC9 - OPEN CHANNEL FOR OUTPUT
CC65 AO 00 LOY #$00
CC67 B9 A3 CC LOA $CCA3,Y
CC6A FO 06 BEQ $CC72
CC6C 20 02 FF JSR $FFD2 - OUTPUT A CHARACTER TO CHANNEL
CC6F C8 INY
CC70 DO F5 BNE $CC67
CC72 20 CC FF JSR $FFCC
CC75 A2 OF LOX U$OF
CC77 20 C6 FF JSR $FFC6 - OPEN A CHANNEL FOR INPUT
CC7A 20 CF FF JSR $FFCF
CC7D A4 FB LOY $FB
CC7F 99 29 CC STA $CC29,Y - THE VALUE RETURNED THROUGH THE

ERROR CHANNEL WILL BE STORED AT
CC29,Y

CC82 20 CF FF JSR $FFCF - ANOTHER VALUE WILL BE RETURNED
CC85 99 20 CC STA $CC2D,Y - THE VALUE RETURNED WILL BE STORED

AT $CC2D,Y
CC88 20 CF FF JSR $FFCF - GET ANOTHER VALUE
CC88 C9 00 CMP #$00 - LOOKING FOR A CARRIAGE RETURN
CC8D DO F9 BNE $CC88 - IF NOT FOUND GO BACK AGAIN
CC8F A9 OF LOA #$OF
CC91 20 C3 FF JSR $FFC3 - CLOSE A LOGICAL FILE
CC94 20 E7 FF JSR $FFE7 - CLOSE ALL FILES AND CHANNELS
CC97 A4 FB LOY $FB
CC99 B9 29 CC LOA $CC29,Y
CC9C 19 20 CC ORA $CC2D,Y
CC9F C9 30 CMP #$30
CCA1 60 RTS
CCA2 23 ???
CCA3 55 31 EOR $31,X - U1 COMMAND
CCA5 3A ???
CCA6
CCA9

20
30

35
20

20 JSR
8MI

$2035
$CCCB

V \ ~ -s 5' 1 'f 1; ¢ I ~1 <>

CCAB 30 31 BMI $CCDE
CCAD 20 39 00 JSR $0039
CCBO 00 BRK

PPtn I THE BACKDOOR APPROACH PAGE 198

CCBl AD 29 CC LDA $CC29 - WILL LOAD THE ACCUMULATOR WITH THE
VALUE FOUND AT $CC29 - AT THE
PRESENT TIME THERE IS A NOP STORED
AT THIS LOCATION

CCB4 4D 05 08 EOR $0905 - MANIPULATE THE VALUE FOUND AT $CC29
CCB7 8D 05 08 STA $0905 - STORES THE VALUE RETURNED AFTER THE

LDA AND EOR OPERATIONS
CCBA AD 2D CC LDA $CC2D - LOAD THE VALUE AT $CC2D - AGAIN, AT

PRESENT, THE ONLY VALUE STORED IS
AN EA

CCBD 4D 11 08 EOR $0811 - EXCLUSIVE OR THAT VALUE
CCCO 8D 11 08 STA $0811 - STORE THE RESULT
CCC3 AD 20 CC LDA $CC2D - SAME PROCESS AS EXPLAINED ABOVE
CCC6 4D OB 08 EOR $090B
CCC9 8D OB 08 STA $090B
CCCC AD 29 CC LDA $CC29 - SAME AS ABOVE
CCCF 4D 08 08 EOR $0908
CCD2 80 08 08 STA $0908
CCD5 4C 5F 09 JMP $095F - JUMP TO MAIN PROGRAM EXECUTION

One of the first steps in the "unprotection" process is to hunt
for an error checking routine. In the code above, we find the
Ul command located at $CCA3. Once the Ul is located, we begin
examining the code around it and any JSR's or JMP·s. We also
look for any file-handling routines involving KERNAL calls (JSR
$FF •.). As you may see from the commented code above, the error
channel is being opened (lS,8,15). When we encountered the code
above, we became immediately suspicious, because of the NOP's.
Although NOP's are not unheard of in a finished program, they
are a bit unusual. At $CC26, we find a JMP to $CCB1. It is this
section of code that is used to load the values returned from
the error channel.

Since we did not know what values were expected by the program,
we ran the program from the original disk, and performed a
RESET. After the RESET, we examined the code in this area and
found that the NOP's had been changed. $CC29 now contained a
32, and $CC2D contained a 31. The program was checking and
storing an error 21. Knowing what the values are is only half
the battle. We must now find a way to insert these values into
the program. Keep in mind that whenever this program is
executed, it will check the error channel. If it does not find
the error 21, it will not execute properly. We must also keep
the new values from disturbing the code we will insert. To
solve these problems, we changed the code to the following.

PPMII THE BACKDOOR APPROACH PAGE 199

ccal A9 32 LOA #$32 - WILL LOAD THE ACCUMULATOR DIRECTLY
WITH THE VALUE IT EXPECTED TO FIND
AT $CC29

CCB3 EA NOP
CCB4 40 05 08 EOR $0905
CCB7 80 05 08 STA $0905
CCBA A9 37 LOA #$31 - WILL LOAD THE ACCUMULATOR DIRECTLY

WITH THE VALUE IT EXPECTED TO FIND
AT $CC2D

CCBC EA NOP
CCBD 40 11 08 EOR $0811
CCCO 80 11 08 STA $0811
CCC3 A9 37 LOA #$31 - LOAD THE ACCUMULATOR WITH THE VALUE

IT EXPECTS TO FIND AT $CC2D
CCC5 EA NOP
CCC6 40 OB 08 EOR $090B
CCC9 80 OB 08 STA $090B
CCCC A9 32 LOA #$32 - LOAD THE ACCUMULATOR WITH THE VALUE

IT EXPECTS TO FIND AT $CC29
CCCE EA NOP

By loading
not matter

the values directly into the accumulator,
what is returned from the error channel.

it
We

will
have

given the program the values it requires to run properly.

Another approach would be to insert a $32 at $CC29 and a $31 at
$CC2D. We would then have to change the STA's at $CC7F and
$CC85 to another area of memory. This would keep the program
from storing the new values in place of the values we inserted.

This example illustrates the need to work with both forms of
\'unprotection·. We use the vback-door~ to find out what the
program expects, and the Ufront-door U to make the necessary
changes.

We have found that replacing the subroutine (JSR) to check the
error channel with a NOP is all that is necessary in most
programs that store an error code. This bypasses the error
checking entirely. In a case like this you would allow the
program to run normally, find the subroutine that checks the
error, insert a NOP in place of the JSR, and save out the
altered code. To locate the subroutine, look for a Ul or B-R,
or file handling of any kind (KERNAL calls). This will often
expose the error-checking routine. Don't assume that a program
is going to be difficult to ~unprotectq. Often when you begin
with this thought in mind, you tend to miss the obvious. If you
find a CMP#$32 and change it to a CMP#$30 and the program still
does not work, you are probably in the right area but have
missed some code that would alter that area of memory. Keep an
eye out for the following if bad blocks are being used:

PPMII THE BACK DOOR APPROACH PAGE 200

DEC (DECREMENT) instructions that refer to the CMP
instructions.

LDA#$32 (Load the accumulator) followed by a STA (Store
accumulator) to the memory address that contains the #$32. Even
if you altered the $32 in the CMP, this instruction would
return it to the original value.

CMP#$32 and CMP#$31 - Always check for the second compare.
CMP#$32 is only checking to see if an
programmer may go on to check for the

error is present,
specific error.

the

If you check the error section thoroughly,
to spot this type of code.

you should be able

ENCRYPTION:

Recently, we have been encountering programs that modify
themselves when executed. The chapter in this manual called
"ENCRYPTION~ will give you an explanation of this procedure.
Many of these programs utilize an AUTOBOOT that is stored in
screen or stack memory. The boot is used to load a program that
will do the error checking and then load and execute the main
program. Some of these boot programs are difficult to capture
during a run, because they take control of the computer.
Normally, we would attempt to make the changes directly on the
disk, but we are now finding that many of these programs are
being modified once in memory. The code found on the disk is
virtually useless to us.

In a situation of this kind, we find the "back-door" approach
particularly useful. Most of these programs will write the new
code to an area of memory that is easily accessible
(OBOO-CFFF). We suggest the following procedure for encrypted
programs which use bad blocks:

1).	 Load the program from the original disk.

2).	 Keep an eye on the disk drive error light. Once the light
begins to blink, RESET your computer.

3).	 Use a machine language monitor to examine the code from
$OBOO-CFFF. More often than not, you will find a complete
error checking routine, along with the code necessary to
load the main program.

4).	 At this point, you will have to alter the routine in the
manner similar to the one described below. This example
uses some alternate KERNAL calls that may be seen
occasionally.

PPMII	 THE BACKDOOR APPROACH PAGE 201

1000 20 AE FF JSR $FFAE - COMMAND SERIAL BUS TO UNLISTEN
1003 A9 08 LDA #$08
1005 20 B4 FF JSR $FFB4 - COMMAND SERIAL BUS TO TALK
1008 A9 6F LDA #$6F - COMMAND CHANNEL ($60 + OF)
100A 20 96 FF JSR $FF96 - SEND SECONDARY ADDRESS AFTER TALK
100D 20 AS FF JSR $FFA5 - INPUT BYTE FROM SERIAL PORT
1010 C9 32 CMP #$32 - HERE WE ARE CHECKING FOR A BAD BLOCK

- IF WE CHANGE THE #$32 TO A #$30,
THE PROGRAM WILL CHECK FOR A GOOD
BLOCK INSTEAD - THIS IS THE ONLY
CHANGE NECESSARY TO ELIMINATE THE USE
OF A BAD BLOCK ON THIS DISK

1012 DO D9 BNE $109B
1014 20 A5 FF JSR $FFA5
1017 C9 30 CMP #$30 - HERE WE ARE CHECKING FOR A GOOD BYTE
1019 DO D2 BNE $109B
101B 20 AS FF JSR $FFA5
101E C9 OD CMP #$OD - CHECK FOR A CARRIAGE RETURN
1020 DO F9 BNE $101B
1022 4C AB FF JMP $FFAB - COMMAND SERIAL BUS TO UNTALK
1025 60 RTS

5).	 Once the alterations to the code are made, you need only
save out the altered code from memory and find an entry
point for the program.

The examples above illustrate a check for bad blocks. This does
not mean that all programs will be checking for these types of
errors. As we indicated earlier, there are other values that
may be checked. We recommend that you look for the standard
errors first. The majority of the programs we have checked
lately are disguising the initial code, but once it is exposed,
you 1 11 find most programmers are still checking for the
standard errors.

FINAL COMMENTS:

If, after many hours of work, you are unable to Uunprotect" a
program, put it away for a while and work on something else Be
sure to make good notes on what you tried. If you succeed in
unprotecting a program, also make notes on the techniques you
used. Write a check list of the procedures you have used and
begin with those on each new program. Remember, experience is
the key to the uback-door~ approach. With each program you
capture, you will learn something in the process. You may find
that, armed with experience and fresh ideas, you can come back
to a program that frustrated you earlier and be victorious.

HAPPY HUNTING!

PPMII	 THE BACKDOOR APPROACH PAGE 202

CRACKING TECHNIQUES - by THE DOCTOR

1. Introduction

Allow me to introduce myself - 1 1 m THE DOCTOR. In this chapter
I'll tell you how I crack programs t and the reasons why you may
wish to crack programs. I'm going to make some assumptions
about what you already know. 1 1 11 assume that you've read the
previous chapters in this Program Protection Manual t that you
know how to use a machine language monitor program t and that
you know what a disk editor is. And most important1Yt you must
have a sense of curiosity and a desire to learn the secrets of
program protection.

Why crack programs? Cracking a program is more than just
making a backup copy. It involves learning about the program
how it works and how to improve its operation. The real
challenge is decyphering the program protection and then
disabling or removing it. The program can be studied and
modified as desired for personal use.

Other reasons for program cracking include making a backup copy
of a protected program and eliminating the destructive drive
head banging. Or to produce a file version of a program t
allowing several programs to be put on a single disk.

II.	 Cracking Tools

I use a number of tools or instruments for investigating
programs. These include both computer programs and hardware.
Many of these are mentioned in previous chapters in this
manual. Commercially available programs will be listed with the
manufacturerls address at the end of this chapter.

1).	 Monitor program: A number of good monitor programs are
available. An important requirement is that it is
re10catab1e to different memory locations. My preference is
DRVMON64 from Starpoint Software because it performs memory
transfers between the computer and disk drive.
Additionally, it will read data contained in the RAM
underneath the computer ROMS. A second choice is MICROMON
from Compute! which will do a re10catab1e machine language
load as well as comparisons of ranges of computer memory.

2).	 Disk Sector Editor: A number of programs are available to
edit disks and have been referenced in this manual. I use
Peek A Byte 64 from Quantum Software and will give examples
of its use. The key reasons I like the program are:

PPMII CRACKING TECHNIQUES - by THE DOCTOR PAGE 203

a.	 Many sectors may be stored in the computer memory,
including files - I don't lose the data because I need
to look at another sector.

b.	 The program will exit to BASIC, a monitor program, or my
own decoding routines without losing my disk data or the
disk editor.

c.	 Many monitor type features are built in.

3).	 Reset Switch: You can buy one or build one from the
instructions in PPM Vol I. It's invaluable for recovering
from crashed computers.

4).	 Cartridge Expansion Board: Buy one, such as Cardco's
5-s10t or CSM's single slot, which allows cartridges to be
turned on and off, as well as a switch to turn on the EXROM
line. This will switch in a nonexistent cartridge by
grounding the EXROM line and allow a reset out of programs
which place the cartridge reset codes at $8000. Most boards
include a reset switch.

5).	 Fastload Cartridge from Epyx: I like this program because
it does fast loads of normal files, does not take up
computer memory, and has an ML monitor with unique features
built in. It can be disabled to avoid conflicts with
protected programs. My version can be reactivated by SYS
57194 - this is an undocumented feature.

6).	 Copy Programs: I won't say much about specific copy
programs because I haven't found any I really like. My
favorite compendium of disk utilities is Di-Sector which
includes DRVMON64. The Nibble copy program of Version 2.0
is already outdated, but the 3 minute copier is excellent.
A second copy program is Omniclone from CSM Software which
does a whole disk copy including most errors. One nibble
copier I use is Diskmaker. Diskmaker allows one range of
tracks to be copied and then requires the copy program to
be reloaded. Note: it doesn't copy the data reliably when
confronted with 27, 29, and 22 errors simultaneously.

7).	 Computers and Disk Drives: A second disk drive is helpful,
but a second computer is even more helpful. I use one
computer strictly for diagnostic programs such as Peek A
Byte 64 and DRVMO~64 and the second for loading the
protected program. The disk drive can be swapped if only
one is available. If the drive is swapped between
computers. be sure to plug the serial bus cable into the
second computer carefully so no pins on the connector are
shorted. Remember that the computer and drive are on and
that carelessness could damage either component.

8). Printer: A useful option for memory or disassembly
listings.

PPMII CRACKING TECHNIQUES - by THE DOCTOR PAGE 204

III. Getting Started - The Initial Disk Examination

First I determine if the program is protected. Fortunately,
many good programs are not. Load the program and follow what it
does to the disk drive. Keep a notebook and take notes - you're
doing an experiment. Does the drive head move over many
different tracks? Does the head bang, and if so on which
tracks? Does the whole program load at one time or does it
access the disk while running? After the program is loaded,
can you exit by pressing the STOP key and/or the RESTORE key,
or can you reset back to BASIC using the reset switch? Can the
directory be listed? The answer to these questions give clues
to the program protection.

To examine head movement, I removed the cover from the 1541
drive (after the warranty expired) by unscrewing the (4)
Phillips head screws in the bottom. The protective metal shield
over the PC board is held in place by (2) Phillips screws on
the left hand side. I placed a narrow strip cut from an
adhesive disk label on the top and side of the support frame
for the read/write head pad, just underneath the black plastic
arm. I labelled every other track position after using a disk
editor to move the head to each track by reading a sector on
that track. Following the drive head is now easy. Put the
covers back when not using this feature.

Next I usually try to make a full disk backup copy of the disk.
The observations made during load help indicate what type of
copy program is required. Head banging on one or two tracks
usually means there are a few read errors on the disk which
must be duplicated. Most weakly protected disks fall in this
category. No head banging usually means no read errors are
present. Omniclone or Di-Sector's 3 minute copier are my
favorites for an initial backup attempt. It is important to
keep a record of all the sectors or tracks on which errors
occur for future use - the 3 minute copier does not copy
errors, so the error writing utility must be used also.
Whatever your choice of copy program, follow the instructions
included with the program for the first copy attempt.

Now it's time to try the copy. First, put a write protect tab
on the copy disk - some programs check for the write protect
tab and erase the disk 1f it is not present. I use the write
protect even if the original disk doesn't have one. Does it
load properly and move the drive head in the same way? Does
the program work or does it hang the computer? If it all
works, congratulations, we're over the first hurdle. If not,
more work remains which will be discussed later in this
chapter. New copy protection routines download a new DOS (disk
operating system) into the 1541 drive, enabling these programs
to read the program disk with many errors and not bang the
head. They may also read data on 1/2 tracks, past track 35, or
in nonstandard format.

PPMII CRACKING TECHNIQUES - by THE DOCTOR PAGE 205

IV. An Examination of Disk Errors, the BAM, and Directory
Sectors

OK, we've now produced a working copy of the disk. What do we
do next? I normally investigate the disk further to determine
what sectors are used, where the sector read errors are, and
whether the BAM and directory are correct. The question is
whether the disk can be used for storing any other disk files.
An example is storing word processor text files on the same
disk with the program. Most program disks don't allow it.

If the disk had no errors, or only a few, I first check the BAM
and directory using a disk editor. The Peek A Byte program will
load all the BAM and directory sectors into different memory
buffers and display them in ASCII and HEX. I display the BAM
sector, use the BAM function to display a map of free and used
sectors for the disk tracks and sectors, and then use the
printer function to print it. If the BAM is inconsistent,
question marks are displayed above the track.

Next I determine what sectors on the disk have data on them.
Peek A Byte will scan an entire disk and print a map showing
any disk read errors for each track and sector in less than 2
minutes. In addition it will compare each sector with a single
sector stored in the computer memory. I usually scan the disk
for blank sectors by reading a blank sector off any disk into a
free memory buffer. Typical blank sectors on 1541 disks have a
4B in byte 00 of the sector and 01 's in all other positions.
Track 1 may have other values in byte 00. Disks formatted on
other drives usually are all OO's.

I scan the disk using Peek A Byte and generate a map of blank
sectors and any read errors, and then print this also. A
comparison of the free sectors in the BAM with the blank
sectors gives a good indication of whether the BAM is correct.
If the two maps are identical, the BAM is good. If there are
non-blank sectors that don't show up in the BAM, it's likely
they contain data used in copy protection or data not
eliminated from the disk after files were scratched. A well
known compiler program is distributed on a disk which contains
company demo programs, scratched from the directory and BAM but
recoverable!

After checking the BAM I look at the directory sectors. Program
names are often modified by including print control characters
such as the delete code $14 (appears as an inverse T in ASCII)
after the shifted space code $AO. All characters after $AO are
ignored by the disk drive but are printed by the computer when
listing the directory. If the directory doesn't list at all or
repeats, I also check the track/sector link at bytes 00 and 01.
These point to the next sector in the directory and in HEX
should be 12 01 on the BAM sector (18/0) and 00 FF on the last
directory sector. The 00 FF means that this is the last sector
and that bytes thru FF are used. Sometimes these values are

PPM I I CRACKING TECHNIQUES - by THE DOCTOR PAGE 206

,)

changed to point to the first sector 12 01 so that the
directory loops. See PPM Vol. I for further information.

I usually format a test or parameter disk for saving files of
memory data and also individual sectors. (If I didn't do this
before, I can exit from Peek A Byte without losing my sector
data and format a disk using the DOS 5.1 wedge.) I write the
individual directory sectors to track 1 of this test disk,
using the same sector location, before altering the program
copy. Then I use the editor to modify the BAM and directory

command through all the files the disk and

sectors in memory and write them back to the
doing here is making the directory listable
inverse screen control characters to either

disk. All we're
by changing the

$AO or a normal
letter or number.

After recording the BAM on the test disk, I use the Validate
to trace on generate

a new BAM (the DOS wedge command for this is simply @V). The
first time I do this, I keep the disk write protected so that a
new BAM won't be written to the disk. If the Validate is
successful, a 26,WRITE PROTECT ON,18,00 error will be generated
when the error channel is read. If the light on the drive
blinks, then a Validate error occurred. Read the error channel
and record where the error occurred. I then restart Peek A Byte
(SYS 49152), pick an unused series of eight pages or buffers,
at $2000 or $3000 for example, and then use the built-in drive
memory~d function for pages 00 through 07 in the drive. The
BAM generated is usually in drive page 07, but could be in 03
through 06. I save this sector to the test disk (and keep a log
in my notebook) and then generate a new free sector map and
print it. The new BAM can be compared to the one read off the
disk by just changing the computer buffer displayed by Peek A
Byte.

If the BAM on the disk and the one read from the disk drive
match, then the BAM is correct for directory files; but be
careful of nonblank sectors which show up as free on the BAM.
The files are probably correct, too. If the BAMs don't match,
then it's probably NOT safe to write data to the disk. I will
sometimes modify the BAM of a disk using Peek A Byte to read
the BAM sector (18/0). I edit this sector in the computer
buffer by setting the four bytes corresponding to a particular
track to 00. Track 1 starts at byte $04, track 4 at byte $10,
etc. The BAM function displays the free sector map from memory,
not the disk. When the tracks I wish to protect from files are
correct on the map, the BAM is rewritten to the disk. The disk
must be marked as an invalid BAM since a validation will free
these sectors.

PPM I I . CRACKING TECHNIQUES - by THE DOCTOR PAGE 207

V. Progr'am Cracki ng From Memory

Many programs are single load, that is, they do not access the
disk drive after loading into memory. Before I proceed to
remove read errors or protection from the disk, I check to see
if the program can be 'downloaded' from memory. This is
sometimes less work than removing errors from the disk. I'll be
discussing primarily ML (machine language) programs, although
some of the comments apply to BASIC programs. Please reread the
chapters on using ML monitors, computer resets, vector
addresses, and computer memory maps. It's necessary to
understand how the reset affects the memory in the computer and
I can't review all this material in a short chapter.

I'll go through the procedures I use step by step and explain
the types of ML routines I look for. First, load a ML monitor
(I use DRVMON64) at either $8000 or $COOO. Use the fill command
to fill most of the computer memory with a single value - I
like 03 because very little ML code uses 03. If DRVMON 64 is
loaded first at $COOO, then I use a unique feature it has:

o 34 turn off Basic, Kernal and I/O devices
F 0803 BFFF 03 fi 11 memory
F 0000 FFFF 03
o 37 turn ROMs & I/O back on

Do NOT fill the memory where the monitor resides. Then reset
the computer from the monitor using:

G FCE2 (same as SYS 64738 in BASIC)

Now load the protected program normally from the original disk.
Try the STOP and RESTORE keys - do they exit to BASIC? If not,
and the program is still working, try the reset button that
you've installed. Many programs will reset to BASIC. Let's
examine this case first. (If the computer hangs, ground the
EXROM line using the expansion board switch, then press reset.
Programs of this type will be discussed later.)

Reload the ML monitor to the same location originally used.
Visually scan the memory and note which areas are still filled
with 03 and which now have code. This can be done in blocks or
continuously:

o 34
M 0800 FFFF dump in HEX and ASCII
o 37

Now refill the memory with 03 1 s and exit to BASIC. Then reload
the original program and reset back to BASIC at the same point
in the program operation. Load the ML monitor in at $8000 if
$COOO was used first. Scan the $COOO - $CFFF memory range also.

PPMII CRACKING TECHNIQUES - by THE DOCTOR PAGE 208

~

If you find 03's at the $8000 or $COOO areas, you'll be OK. If
other areas of memory are available instead, you may be able to
use LLMON ($2000) or ORVMON ($0801 version).

Next we need a routine to transfer the memory in the range
$0000-$0802, which is altered upon reset, to a free section of
memory. If the area from $5000 to $7000 is free, then I use the
following routine to move memory. Save to disk before running
the routine is self modifying to avoid changing zero page
locations.

$6000: 78 SEI prevent interrupts
$6001: A2 00 LOX #$00
$6003: BO 00 08 LOA $0800,X save start BASIC first
$6006: 90 00 6F STA $6FOO,X store here
$6009: E8 INX
$600A: DO F7 BNE $6003 loop
$600C: CE 08 60 DEC $6008 change pages
$600F: CE 05 60 DEC $6005
$6012: 10 EF SPL $6003 continue to zero page
$6014: SO 00 OF LOA $OFOO,X save I/O chi ps
$6017: 90 00 SF STA $5FOO,X
$601A: E8 INX
$601B: DO F7 SNE $6014
$6010: CE 16 60 DEC $6016
$6020: CE 19 60 DEC $6019
$6023: AD 16 60 LOA $6016
$6026: C9 DO CMP #$00 last I/O page
$6028: BO EA BCS $6014 continue until #$CF
$602A: A2 FF LOX #$FF
$602C: 78 SEI
$6020: 9A TXS set stack pointer
$602E: 08 CLD
$602F: 4C F2 FC JMP $FCF2 reset-skip CBM80 check

How do we jump to this routine? If we could reset from the
program without hanging, then we can place the ROM reset code
at $8000 to jump to our routine. Reread the chapter on resets
and KERNAL vectors if you don't understand. Use the monitor to
place the following code at $8000, where $6000 is the start of
our routine.

8000: 00 60 00 60 C3 C2 CD 38 30

Now exit the monitor and reload the protected program. At the
same point in the program operation, first try the RESTORE key.
If the vector at $318 was not altered by the program, we'll
jump to our save routine after the NMI saves the program
counter and status register on the stack. The stack pointer is
not saved by this routine. If RESTORE does NOT work and the
program is still operating, try the reset button. This will
correctly save memory from $2 to $8FF only. The I/O chips are
altered by a reset, as are the values at $0 and $1. These
values are normally 2F and 37, respectively, and should be
corrected in the saved memory. Reenter the monitor program left

PPMII CRACKING TECHNIQUES - by THE DOCTOR PAGE 209

in memory, dump the memory as done before, and disassemble
changed memory locations. Save each block of memory that
appears to contain code to the test disk. Be sure to save the
pages of memory moved from $0 to $8FF, and also $0000 to $OFFF
if the RESTORE key was used. Look under the ROM's, too.

We must now examine the code to determine how to restart it
(the entry point). If the RESTORE key jumped to our memory move
routine, then the NMI vector at $318 was not altered and
finding a good point to enter may be difficult. Since most
programs are in a waiting loop reading the keyboard, I use to
monitor HUNT command to search for either GETIN, $FFE4, or
CHRIN, $FFCF and then examine the routines which call them. A
good example is from a menu driven program waiting for a number
from 0 to 9 to be entered:

$1000: 20 E4 FF JSR $FFE4 ; read keyboard
$1003: FO FB BEQ $1000 ; repeat if no key
$1005: C9 30 CMP #$30 ; ASCII '0'
$1007: 90 F7 BCC $1000 ; repeat if < '0'

'$1009: C9 3A CMP #$3A ; ASCII .. .
$lOOB: BO F3 BCS $1000 ; repeat if >= I:'
$1000: 29 OF ANO #$OF ; remove high nibble
$lOOF: OA ASL ; double
$1010: AA TAX ; use X as index

There is more to this routine, but it gives the idea. In fact,
after restoring the memory for this program, a JMP to this
routine was all that was required.

It is not usually this simple. Sometimes the stack pointer must
be restored first, as well as A, X, and Y. These can be saved
when using the RESTORE key by putting the following at the
beginning of the memory move routine - the address pointer and
status registers were saved on the stack first:

SEI
STA $6080
STX $6081
STY $6082
TSX
STX $6083 ; save values in any convenient locations

If the reset button had to be used, then this information is
gone since the 6510 registers are scrambled on reset. However,
if the RESTORE key restarted the program after the initial
program load (before we put our code at $8000), then the vector
at $318 may be a good place to look for a starting address. If
the vector points to a routine that restores initial memory and
register values, then we may be home free.

Often values are stored either in unused color RAM, I/O, or VIC
chip memory. Some of these values must be correct for the
program to operate. Since this information is lost on reset, if
the program does not work when the memory is restored, a search

PPMII CRACKING TECHNIQUES - by THE DOCTOR PAGE 210

of memory for routines which check these values is required. I
like the Fastload cartridge monitor for this search because it
will hunt for a range of values or disassemble only code which
references a specific range of addresses. An example of such a
routine is one that checked the seconds of the time of day
clock at $DC09 for the value #$50, resetting the computer if
different. Note that this routine would be erased by a reset
since it is in the INPUT buffer ($0200-0258):

$0200 48 PHA ; save A
$0201 AD 09 DC LOA $DC09 ; TOO
$0204 C9 50 CMP #$50
$0206 DO 02 BNE $020A ; reset if not equal
$0208 68 PLA ; restore A
$0209 60 RTS ; return
$020A 6C FC FF JMP ($FFFC) ; reset

Many programs now place the ROM reset codes at $8000 as a form
of protection. Now a reset will typically hang the computer or
erase memory and then reset to BASIC. However, the warm start
vector at $8002 is often a good start address if RESTORE
restarts the program. More drastic measures are now required. A
modified HESMON cartridge, or a modified KERNAL ROM on a
special board can be used to break out of the program. The NMI
or reset vectors can be changed and the cartridge or Kernal
switched in after the protected program is loaded. The use of
these techniques is discussed elsewhere in this manual. I alter
the NMI vector at $FFFA and reset vector at $FFFC in the RAM
memory underneath the KERNAL ROM to point to my memory move
routine. I first copy the ROMs into RAM with a monitor:

T AOOO BFFF AOOO Transfer BASIC to RAM
T EOOO FFFF EOOO Transfer KERNAL to RAM
:0001 35 turn off BASIC & KERNAL ROMs
:FFFA 00 60 00 60 change NMI & RESET vectors
X exit to BASIC

Now load the protected program. Typically this technique
doesn't work because the program switches the ROMs back in. In
this case I use a push button switch to temporarily switch in
the RAM before trying either the RESTORE key or reset button.
The original C-64, whose circuitry matches the Programmer's
Reference Guide circuit diagram, and whose major chips are in
sockets, can be bank switched easily. I connect the switch
across pins 7 (HIRAM) and 14 (ground) of the PLA chip U17. The
pin numbers start at 1 at the upper left, with the notch at the
top. Do NOT attempt this unless you can understand the circuit
diagram and the computer PC board layout - otherwise you could
burn out the computer. Remember, this or any modification can
cause damage, so be careful. I then press this button just
before trying the reset so that the vector in RAM is used
instead of ROM. Some programs place vectors in RAM or clear
memory, attempting to defeat this technique. Often they do
this right away in the boot, in which case you may be able to
prevent it from happening.

PPM I I CRACKING TECHNIQUES - by THE DOCTOR PAGE 211

The program memory can be restored by using a BASIC program to
load the various blocks as ML files. However, since the first
few pages of memory must be restored with an ML move routine
with interrupts disabled, I prefer an all-ML routine. An
example is shown below with comments - it was not necessary to
restore the screen or I/O values. The program ended before
SlAOO.

SlCOO: 78 SEI prevent interrupts
SlC01: A5 BA LOA $BA use current drive no.
$lC03: 80 BA 17 STA $17BA
$lC06: A2 00 LOX #$00
$lC08: BO 00 lA LOA $lAOO,X restore memory from
$lCOB: 90 00 03 STA $0300,X ; $0300 to zero page
$lCOE: E8 INX
$lCOF: 00 F7 BNE $lC08 loop through page
$1 C11: CE OA 1C OEC $lCOA hi byte of LOA address
$lC14: CE 00 lC OEC $lCOO 10 byte of STA address
$lC17: 10 EF BPL $lC08 ; loop to page zero
$1 C19: BO 00 1B LOA $lBOO,X restore code
$lC1C: 90 E8 07 STA $07E8,X
$lC1F: E8 INX
$lC20: 00 F7 BNE $lC19
$lC22: AE 4F lC LOX $lC4F unused memory location
$lC25: 9A TXS restore stack pointer
$lC26: AO 50 lC LOA $lC50 status register
$lC29: 48 PHA and save on stack
$lC2A: AO 51 lC LOA $lC51 restore A, X, Y
$lC20: AE 52 lC LOX $lC52
$lC30: AC 53 lC LOY $lC53
$lC33: 28 PLP ; restore status reg.
$lC34: 4C 53 OC JMP $OC53 use your own address

If the reset button was used, then all the 6510 register values
were lost. It may not be necessary to restore A, X, Y or the
status register if the program routines reinitialize them. The
stack pointer must be reset, however, using either detective
work or trial and error.

A BASIC loader less than #$E8 bytes long can be used to jump to
this routine. Just type NEW from BASIC, then type in the
loader, which must include a SYS to this routine. The ML
monitor can be used to move the various memory blocks adjacent
to the main program and the ML move routine, and to save the
whole program starting with 0801. Your ML move routine should
use the addresses appropriate for your program, not those in
the above example.

PPM I I CRACKING TECHNIQUES - by THE OOCTOR PAGE 212

VI. Program Cracking From Disk

Many programs today are multiple load, that is, they access the
disk drive many times for data or one of a collection of
programs. Other programs are heavily protected in the computer
memory, or use altered DOS routines that are downloaded into
the 1541 drive to read tracks with read errors. These programs
must usually be tackled on the disk. Before continuing with
this section, please reread the material in this manual on read
errors, altered DOS, autoboot routines, and undocumented op
codes.

You should already have made a best copy of the protected disk,
made a list or map of all the sectors with either data or
errors, and formatted a test disk for files and sector data. If
you haven't done this, reread the first portion of this chapter
and do the initial examinations of the protected disk.

Since many programs use altered DOS routines as a form of
protection, I load the program first and wait until either the
main menu comes up or the program is fully loaded. I then
disconnect the drive's serial bus cable (carefully, it's still
turned on) and reset the computer. Since I have two drives, I
connect the second drive to the computer and load Peek A Byte
64, DRVMON64 (32768), and MICROMON (36864). If you have two
computers, it's easier to leave these programs in memory in one
computer all the time. I then reconnect the first drive and use
the DOS 5.1 wedge to read the error channel. If it responds, we
can proceed to read the drive memory. If it doesn't, I try a
different drive number using the wedge @#8 or @#9 command. One
program changed the drive number to 11. If it still doesn't
respond, then the drive may be using altered serial bus
communication, which is beyond the scope of this chapter.

I prefer using Peek A Byte or DRVMON64 to read the disk drive
RAM memory from $0000 to $07FF - the I/O chips and ROM aren't
important now. Peek A Byte displays whole pages of memory in
HEX or ASCII, which I find easier than using only a monitor. I
typically set MEMSIZ ($0283-0284) and FRETOP ($0033-0034) first
to protect my ML code from BASIC, and then read the drive
memory into the computer memory above BASIC. If you have only
one drive and one computer, the following BASIC
entered from the keyboard and will put the data

program can
at $4000.

be

1 POKE55,0:POKE56,64:POKE51,0:POKE52,64
5 OPEN15,8,15 : REM USE CORRECT DRIVE NUMBER
10 L=O:FOR H=O TO 7
20
30

PRINT#15, 'M-R'CHR$(L)CHR$(H)CHR$(O)
FOR 1=0 TO 255

40 GET#15,A$
50
60

POKE 256*(64+H)+I,ASC(A$+CHR$(0))
NEXT:NEXT

PPMII CRACKING TECHNIQUES - by THE DOCTOR PAGE 213

Save the drive memory to the test disk as a ML file using the
monitor. Now inspect the drive memory with Peek A Byte (or
monitor). In particular look for ML routines left in the stack,
typically after $150, remnants remaining after $200, and in
$300 to $7FF. Usually $700 will contain a copy of the BAM
sector, one page will have a sector from the directory, and one
page will have the last sector loaded - $600 is typically
blank. Disassemble anything that looks like ML code. If
references are made to either $1800, $lCOO, or $lC01, then that
memory page probably contains an altered DOS routine. Write
these this memory individually to any free sectors on track 2
of the test disk and make a log book entry of locations. We'll
get back to this data later.

Most protected programs use an autoboot which loads in the
computer either at $0102, at $02A7-$0304, or at $032C. The
first type is a stack loader which places all 01 's or 02's on
the stack so that the RTS at the end of the load returns to
$0102 or $0203. The second type of loader alters the BASIC
vectors starting at $0300 so that when the load is finished and
it returns to BASIC, it will jump to the ML routine instead.
The third loader modifies the CLALL'vector at $032C to jump to
the ML routine since CLALL is called after finishing a load.
See the chapter on autoboots for more info.

I use Peek A Byte to read the first directory sector which
lists the autoboot file. The first track and sector of the file
are given at bytes 03 and 04 of the directory entry. I then
read the first file sector and note its load address, which is
specified (low byte/high byte) by bytes 02 and 03 of the
sector. Since the initial loader is usually only one or two
sectors long, I disassemble the code and try to determine the
type of loader it is, before moving it to its correct location.
If the code loads at $0102 normally, I use MICROMON to load it
at, for example, $1202. Then when I disassemble the code, most
of each address lists correctly. If the code disassembles OK,
we're golden. Many programs are now encrypted, unfortunately
(see the chapters on encryption and decryption)

Another technique used is undocumented opcodes (see the chapter
on these). An example is the following code which loads at $102
and uses a stack return to $102.

$0102: 18 CLC
$0103: A2 OA LOX #$OA
$0105: 3F 00 01 RLAN $OlOO,X ; undocumented code
$0108: E8 INX
$0109: DO 70 BNE $0288 ; incorrect branch
$OlOB: rest of code

The code won't disassemble this way since the code 3F is
undocumented. It first rotates left: ROL $OlOO,X (=$OA), and
then does an AND with the accumulator. In this case we don't
care about the accumulator. The important data is that $OlOA is
rotated from $70 to $FA since the carry is clear. Now the

PPMII CRACKING TECHNIQUES - by THE DOCTOR PAGE 214

"

branch goes to $0105. If this code is stored at $1102 instead,
then transfer the code from $1102 - $110A to $1202. Change
bytes $1207 to $12 and $120A to $FA. Terminate with an RTS to
execute the code from Peek A Byte, or a BRK if from the
monitor. After executing this code at $1202, the rest of the
code at $1102 should be decyphered.

Now disassemble the resulting code and look for:

Il. U1 ' or IB-R I (or the reverse, i . e . 1U) which read a
sector in

2.	 IB-E I (or reverse) which reads the sector into the disk
drive and executes

3.	 KERNAL routines which load files, open drive channels
or transfer data

I use the Peek A Byte disassembler because it shows the ASCII
characters. Save this decoded sector to a free sector on the
test disk for further reference.

Often all the code is read from the disk by sectors and is
encrypted. A routine may update the track and sector in the
command sent to the drive, or a routine may be loaded into the
drive using IB-E' or 1M-W I

, or an 1&' file may be opened. If
1M-W I is used, then the code may be found in the computer
memory after doing a reset. If 'B-E' is used, I use Peek A Byte
to read the sector into a computer buffer. Often it must be
decoded in a fashion similar to the first loader. Again, after
decoding, write the sector to the test disk. An 1&' file can
often be opened in order to read the data into the drive. The
drive memory can then be read with Peak A Byte or DRVMON64. Put
a write protect tab on the disk first, one program live seen
tried to format the copy disk. From BASIC use:

OPEN 15,8,15,1&*1 :CLOSE15: REM DOES FIRST 1&1 FILE

The routine read into the drive typically reprograms DOS so
that a sector with an error can be read, both verifying the
error was present and reading in new data. One must understand
how the drive works before one can crack these schemes. Reread
the chapters on disk protection schemes. As an example, I
followed the read routine in the drive and found the last
normal sector read into the drive. I read this sector with Peek
A Byte and decoded it. The routine read in a page of drive
memory necessary to the program. It was read from a track with
different track densities by first identifying the track
header, then reading in the disk nibble data. The key portion
of this routine was:

PPMII CRACKING TECHNIQUES - by THE DOCTOR PAGE 215

jsr sync find sync & change density
ldy #$bb

waitl bvc waitl for data
clv
lda $lcOl read byte
sta $OlOO,y store in buffer
iny
bne waitl ; loop

wait2 bvc wait2
clv
lda $lcOl ; read byte
sta ($30) ,y ,. store in buffer
iny
jsr sync find sync & change density

wait3 bvc wait3
clv
lda $lcOl throwaway

wait4 bvc wait4
clv
lda $lcOl ; read byte
sta ($30) ,y ; continue storing
iny
cpy #$83 don't finish buffer yet
bcc wait4
jsr sync change density again!

code continues

sync lda $lcOO
sec
sbc #$20 affects density bits 5 & 6
sta $lcOO ; change density

waitsync bit $lcOO test bit 7
bmi waitsync wait for sync
lda $lcOl throwaway byte
clv
rts done

This routine was modified to eliminate the density change and
to read the whole sector without intervening sync bytes. Peek A
Byte was used to re-encrypt the sector data and write it back
to a copy of the disk. The sector data left in the disk drive
was written to the disk copy on the same track as the original
error track. The disk was then fully copyable with normal
backup routines.

PPMII CRACKING TECHNIQUES - by THE DOCTOR PAGE 216

VII. Summary of Cracking Techniques

Initial Examinations:

1). Make the best back up copy possible and format test disk.

2). Check the original disk for errors and record them.

3). Make a map of nonblank sectors.

4). Check whether the BAM is correct and compare to nonblank

sectors.

Breaking Program Out of Memory:

5). Look at warm start vector for possible start address.

6). Search for keyboard routines corresponding to menu.

7). Use monitor to copy code out of memory.

Breaking Disks:

8). Use monitor and Peek A Byte to examine initial loaders.
9). Write decoder to decypher encoded sectors.

10). Look for KERNAL routines which transfer data to/from drive.
11). Look for 'Ul:', 'B-R:', 'M-W I

, 'B-E', and 'M-E' commands.
12). Read any sectors referenced in previous routines.
13). Look for altered DOS routines.
14). Modify routines, reencode, and write back to disk.

I know this summary is cursory and does not cover many
situations. I tried to give a flavor of the way I approach
cracking programs, the tools I've found useful, and the types
of code I look for. If youlve read and understood all the other
chapters in this manual, then get out and practice. That's the
only way you'll learn because just about every protection
routine I've seen lately has been different. Good luck!

VI I I. ADDRESSES

1.	 DI-SECTOR and DRVMON64

Starpoint Software

Star Route 10

Gazelle, CA 96034

2.	 PEEK A BYTE 64

Quantum Software

P.O. Box 12716

Lake Park, FL 33403-0716

3.	 MICROMON

Compute! Publications

P.O. Box 5406

Greensboro, NC 27403

4.	 DISKMAKER

Basix

Box 31209

Santa Barbara, CA 93130

PPM I I CRACKING TECHNIQUES - by THE DOCTOR PAGE 217

TRACING PROGRAMS

The general idea in program protection is to tie the proper
functioning of a program to a physical object. This physical
object is usually the disk, tape or cartridge that the program
was supplied on, but it can also be some other object like a
dongle (key). If the physical object is hard to duplicate, the
spread of illicit copies will be severely restricted. This
two-sided nature of program protection provides us with two
corresponding ways to proceed when we wish to obtain an
archival copy: reproduce the physical protection or disable the
program code that checks for it.

Up to this point, on the Commodore 64, it has been fairly
simple to copy the physical protection. We've all had the
experience of buying a piece of software, only to discover that
it defeats all the copy programs we can find. If we waited a
little while, however, there soon appeared a new copy program
which could handle our tough case. Almost simultaneously, it
seems, we would also come up against a new protection scheme
which our 'latest and greatest' copy program couldn't handle.
While it seems that this process could go on forever, we may be
nearing a time when the physical protection will be beyond the
power of our home equipment to reproduce. New schemes, such as
laser-encoding disks (burning a spot on the disk in a precise
place) or putting special circuitry in cartridges, are a whole
quantum leap ahead of current schemes.

What about our other alternative, tracing down the protection
code and disabling it? Up to now, this too has often been a
very simple matter. Many programs only check for the physical
protection once, right at the beginning of the boot process or
just before jumping to the main menu. In such cases, we can
usually lift a working copy from memory after the program
starts. With the right entry point we can then start the
program ourselves past the protection check. We may also be
able to find out precisely how the program does its check, and
alter it so that it passes on an unprotected copy. If you are a
PROGRAM PROTECTION NEWSLETTER subscriber, you know that this
often involves changing just a few bytes, or even just a single
byte.

We can't expect things to be this simple forever, though. There
are already programs which check the protection each time they
leave the main menu or go to a new screen. There are even
programs which appear to work for a while, and only 'crash'
when you reach a certain screen or try to save your work. We
have also seen encrypted programs and programs using
undocumented opcodes. In short, the protection code is becoming
better integrated into the normal functioning of the program,
more deeply 'buried', as time goes by. If we don't want this
evolutionary process to leave us behind, we have to jump on the

PPMII TRACING PROGRAMS PAGE 218

bandwagon NOW. In this chapter weill take an introductory look
at the process of TRACING PROGRAMS.

The skill of being able to trace a program has many added
benefits beyond just making straight backup copies. Many
programs that take up a whole disk in their original form can
be reduced to a few files once the protection method is broken.
Not only can you save disk space this way, you can also
organize your software in a logical fashion. You can put
similar programs together, or put data on the same disk with
the program that uses it~ Another thing you may want to do is
modify something in the regular functioning of the program. It
might be as minor as changing screen colors or as major as
fixing a serious shortcoming/bug. You may be able to depend on
the PROGRAM PROTECTION NEWSLETTER or knowledgeable friends for
help in accomplishing some things, but these sources can't
cover everything you might want to do. If you want something
done, the saying goes, sometimes you just have to do it
yourself.

One more area where experience in tracing programs is useful is
in writing your own programs. Most of us bought our computers
with at least a vague intention of learning to program them
someday. A fact that seems to be routinely ignored by books and
courses on programming is that programmers spend far more time
debugging their programs than designing them to start with.
Although the best idea is always to reduce debugging time to a
minimum by careful design, the best laid schemes of mice and
higher-order mammals do go astray with alarming regularity.
Since the skills involved in analyzing and tracing a protection
scheme are the same skills required to debug your own programs,
this is as good a way to learn as any.

Convinced? OK, let's go for it. To remain applicable to
program protection schemes as well as programming in general,
I'll restrict my examples to machine language. Thus your number
one priority is a working knowledge of 6510 machine language
(ML). Many people, even some who are proficient in BASIC, feel
that machine language is too hard for them to ever learn. I
feel that with a little help, if you really want to learn it
and you put some time into it, there are few other limits to
what you can accomplish. You should learn to be comfortable
with reading and writing ML (or more accurately, its assembler
mnemonic counterpart). This doesnlt mean you have to have the
hex opcodes memorized (although that never hurts either). In
this respect Commodore owners (and Atari and Apple owners as
well) have been let off rather easily; the 65xx family (6502,
6510, etc.) instruction set is by far the simplest of any
processor still in widespread use. Itls a nice small pond to be
a big fish in, if you catch my drift.

In addition to 6510 ML, it is important to learn a bit about
how the microprocessor interrelates to the rest of the C-64
hardware and firmware. This includes such things as the KERNAL
and BASIC ROMS (firmware); the memory manager (PLA); a little

PPMII TRACING PROGRAMS PAGE 219

about the VIC and CIA chips; and similar knowledge about any
peripherals we may be dealing with (usually the disk drive). If
this partial list already sounds overwhelming, don't be
discouraged. You can pick up the knowledge you need as you go.
In fact, this is how many successful programmers got where they
are today. As you encounter new schemes and new hardware you
naturally learn more and more of those very things you need to
know.

Finally, you should equip yourself with the right tools. A
basic requirement is the C-64 Programmer's Reference Guide.
Other suggestions include additional reference books on ML and
the C-64 such as The Anatomy of the C-64 by Abacus; a good ML
monitor or selection of different monitors on disk and
cartridge is important; some utility programs such as a disk
sector editor and perhaps an assembler package; and a printer
or second computer system if possible.

Don't forget about a good working environment too, with space
to work where you can pace and mutter to your heart's content
without disturbing normal people. A friend or two is also very
helpful, even if they aren't wizards yet either. There is one
more thing many people overlook: good habits. Use write protect
tabs on originals and important copies. Label disks
meaningfully. Be careful with your disks. Always have at least
one backup, but keep down the number of obsolete copies.
Comment your listings ·for later reference. Take notes.

The last item deserves some extra attention. You should not
depend on your memory alone. You can waste a lot of time trying
to remember things like what you have and haven't tried yet,
which experiment had which result and where the subroutine
you're in got called from. Write it all down in some fashion.
Use your own shorthand. Draw diagrams (they're worth a thousand
words, you know). Work methodically. Try to think of yourself
as a scientist - a COMPUTER scientist. Buy yourself a white lab
coat (just kidding).

Assuming you have the requisite desire, time and equipment, we
are ready to begin. The place to begin is at the beginning. The
program has a main ENTRY POINT that is our entrance into its
inner workings. By following the path the program itself takes,
and taking into account the computer's initial condition, we
can see how it does what it does. In other words, GIVEN ENOUGH
TIME AND INFORMATION, we can trace the program's path with 100%
accuracy.

Let's start with the computer's initial state. Part of our job
is to determine what is important and what is not important to
the proper functioning of the program. Some programs are picky
about what state the computer is in initially; other programs
don't care. To reduce the number of unknowns we should always
start our test procedure with a clean slate. Although sometimes
a simple RESET is all we need, to really be safe from
'hang-overs' we should start with a power-up.

PPMII TRACING PROGRAMS PAGE 220

Next, you should fill as much of memory as possible with a
dummy byte before loading the program to be examined. DON'T use
$00 bytes; they are just too common, especially with programs
that clear memory. My personal favorite for a dummy byte is
$99. Although it looks like it might crop up often because of
the 9's, remember this value is in hex. Hex $99 converts to an
obscure 153 decimal, which seems safe enough. Also, if you run
into some 99 1 s while disassembling code, they are listed as STA
$9999,Y. You can scroll through these faster than $00 (BRK)
bytes, which take up one line per byte. Finally, when you
'Interpret' memory with a monitor, 99 1 s show up as an
easy-to-see set of vertical lines, and they list as PRINT
statements in BASIC!

I make it a point to fill all non-essential memory during my
first tests on a program, at least until I know what areas are
used. On the program disk is a program called 'FILL'ER Up l .
This fills the following areas of memory with $99 bytes, and
optionally loads a program file when finished:

1).	 The entire stack ($0100-01FF).

2).	 The operating system input buffer ($0200-0258).

3).	 Some RS-232 and tape areas ($92-97, $9B-B1, $B4-C4, and
$0293-$02A5).

4).	 The vicinity of the cassette buffer ($0334-03FF).

5).	 Screen memory ($0400-07E7). You ' 11 see reverse Yls appear
when this happens.

6). Other miscellaneous 10w-mem areas ($02A7-02FF and
$07E8-07FF).

7).	 All of the BASIC area, except where the FILL'ER UP program
itself resides ($0800-02C1)

8).	 The RAM under the BASIC ROM ($AOOO-BFFF).

9).	 The free area from $COOO-CFFF.

10).	 All of color RAM ($D800-DBFF). Screen characters will turn
brown when this happens.

11).	 The RAM hidden under the I/O devices and character ROM
($DOOO-DFFF).

12).	 The RAM under the KERNAL ($EOOO-FFFF).

PPMII	 TRACING PROGRAMS PAGE 221

'FILL'ER UP' resides at the beginning of the BASIC area. You
loa d i t wit h LOA D \I FILL' ER UP 'I t 8 and ex ecut e ; t wit h RUN.
BasicallYt it fills all of RAM except some essential low memory
and the I/O devices (the VIC t SID and CIA chips). Following
this it jumps into the BASIC warm-start process via the vector
at $A002. This will return you to BASIC. If you want the
routine to load the boot for the program you are investigating t
all you have to do is change the JMP $(A002) at $086B with 3
NOP's and put the boot program name into memory starting at
$0890. As long as you leave the $AO's at the end of the program
name t you won't even have to specify the length of the boot
program's name. Fina11Yt you need to put a JMP statement at
$0889 to start up your program.

One more thing is necessary before we look at the code. We need
to have some idea of what to expect. If it's on disk or tape t
does the boot load into the BASIC area (LOAD uNAME"tdevice) or
does it load somewhere else (LOAD ~NAMEntdevicet 1). It may run
automatically when loaded (autoboot) or you may have to do a
BASIC RUN or SYS command. If the program is on cartridge t you
can start it with a power-upt a RESET t or possibly with the
RESTORE key or a direct SYS. (Note that many cartridges
routinely clear to OO's the low mem areas filled by 'FILL'ER
UP I)•

If it is disk-based t observe what the disk drive does during
the load process. If it goes back and forth from track to track
or to the directory often, it may be loading several short
program files. If the red access light flickers t the program
may be loading random files via the 'Ul I command. If a
tape-based program starts and ss many times, it may be loading
a data file. BasicallYt you should summarize the start-up
pr~cess and note any peculiarities for later reference.

I sometimes use a watch with timing functions to time disk
loads. The following rules of thumb can help you estimate how
many blocks on the disk are being loaded and how much memory is
being used:

1).	 The normal load speed is close to one block per second on a
straight load; slower if moving from track to track a lot.

2).	 Each block on the disk is one page of memory (usually only
254 bytes). That'~ 1/4 K. Four blocks make up lK and
sixteen blocks make up 4K, which is one 'letter ' of memory
(from $COOO to $DOOO is one 'letter't for example).

Note carefully what happens when the program starts. Does the
screen change colors t flash garbage briefly or shrink to 38
columns? Does the sound chip make a brief noise t especially in
pr~grams that DON'T use sound? These things may be a sign of
some protection value being stored out into the VIC (video) or
SID (sound) chip in a sloppy fashion. If you see a brief screen
of garbage t the program may relocate VIC screen memory or store
some data on the screen. How long does the actual start-up

PPMII	 TRACING PROGRAMS PAGE 222

take? If the program takes an appreciable time after it's
loaded in (disk) or after the computer is RESET (cartridge) it
may be decrypting itself. A cartridge may also be downloading
itself to RAM.

1

Having summarized the start-up procedure and noted any
peculiarities, many people RESET the computer at this point and
examine memory with a monitor for an entry point into the code.

1 11 assume that youlve tried this unsuccessfully, or that you
just want to learn how the program works. Go back to the boot.
If it's an autoboot disk program, figure out which type (see
the chapter on autoboots). If the boot is in BASIC, trace that
until you come to a SYS into the ML code. For cartridges, the
cold-start address at $8000 or $AOOO, or the RESET vector at
$FFFC (MAX cartridges) is the place to start (see the chapter
on cartridges).

Once we know where the program starts, we need to follow it
through, making notes of any JMPs or JSRs. It is also
especially important to keep a running list of the memory
locations changed by the program. For my example, 1 1 m going to
use the 'FILL'ER UP I program. It makes use of several different
types of addressing, has a table-driven structure, and
optionally does a program load. Here is the program listing:

PPMII TRACING PROGRAMS PAGE 223

BASIC CODE: 10 SYS2061 (=$0800)

ML CODE:

0800 78
080E A9 34
0810 85 01
0812 A2 FF
0814 9A
0815 E8
0816 BO AO 08
0819 85 FC
081B E8
081C BO AO 08
081F 85 FB
0821 DO 04
0823 C5 FC
0825 FO 26
0827 E8
082E BO AO 08
0831 85 FO
0833 A9 99
0835 AO 00
0837 91 FB
0839 A4 FB
083B C4 FO
0830 DO 06
083F A4 FC
0841 C4 FE
0843 FO DO
0845 E6 FB
0847 DO EC
0849 E6 FC
084B DO E8
0840 A9 37
084F 85 01
0851 A9 00
0853 85 FB
0855 A9 08
0857 85 FC
0859 A9 99
085B AO 00
0850 91 FB
085F C8
0860 DO FB
0862 E6 FC
0864 A4 FC
0866 CO DC
0868 DO Fl
086A 58
086B 6C 02 AO

Disable IRQ interrupts

Switch out ROMs and I/O

Start stack at $FF

Hi-byte, start of fill

Lo-byte, start of fill
Branch if not zero
Check hi-byte too
Terminate if both zero

Hi-byte, end of fill area
Filler byte
Start Y index at 0 offset
Store A indirect, V-indexed

Not done with this area

Done with this area
Next byte to fill

Next page for fill
Fi 11 next area

Switch ROMs & I/O back in

Lo-byte, color RAM addr.

Hi-byte, color RAM addr.
Fill value
Reset index
Store A indirect, Y-indexed
Next byte

Next page

Compare to end page
Branch to continue fill
Done; enable IRQ
Warm-start BASIC via vector
(remove to autoload file)

SEI

LOA

STA

LOX

TXS

INX

LOA

STA

INX

LOA

STA

BNE

CMP

BEQ

INX

LOA

STA

LOA

LOY

STA

LDY

CPY

BNE

LOY

CPY

BEQ

INC

BNE

INC

BNE

LOA

STA

LOA

STA

LOA

STA

LDA

LOY

STA

INY

BNE

INC

LOY

CPY

BNE

CLI

#$34
$01
#$FF

$08AO,X
$FC

$08AO,X
$FB
$0827
$FC
$0840

$08AO,X
$FO
#$99
#$00
($FB),Y
$FB
$FO
$0845
$FC
$FE
$0815
$FB
$0835
$FC
$0835
#$37
$01
#$00
$FB
#$08
$FC
#$99
#$00
($FB),Y

$0850
$FC
$FC
#$OC
$085B

Jftl P ($A002)

PPM I I TRACING PROGRAMS PAGE 224

086E A9 OF LOA I$OF COOE TO AUTOLOAD A FILE
0870 A2 08 LDX 1$08
0872 AO OF LDY I$OF
0874
0877

20
A9

BA
10

FF JSR
LDA

$FFBA
1$10

Open 15,8,15

0879 A2 90 LOX 1$90
087B AO 08 LDY #$08
087D 20 BD FF JSR $FFBO File name at $0890-089F
0880 A9 00 LOA #$00
0882 A2 FF LOX #$FF
0884 AO FF LOY #$FF
0886 20 D5 FF JSR $FF05 Load file
0889 6C 02 AO JMP ($A002) Warm-start BASIC (or change

to program's start addr.)

MEMORY TABLES

0890 AO AO AO AO AO AO AO AO File name
0898 AO AO AO AO AO AO AO AO

08AO 00 92 00 97 00 9B 00 Bl Fill area pointers
08A8 00 B4 00 C4 01 00 02 58 (Hi-byte, lo-byte)
08BO 02 93 02 AS 02 A7 02 FF
08B8 03 34 07 FF 09 00 FF FF
08CO 00 00 Termination indicator

In this program, we start with a BASIC SYS to 2061 ($080D). The
first thing the ML code at $0800 does is disable IRQ
interrupts. This is usually a sign that the program wants to
have complete control of the computer to do something special.
In this case, it is going to reconfigure memory so that all the
ROMs and I/O devices are switched out. An IRQ would crash the
program if it occurred, since the IRQ routine is in KERNAL ROM.

When tracing programs it is very important to keep track of the
current value of the registers (AC, XR, YR etc.) at each point
in the program. You should also pay close attention to any
stack operations (JSR, RTS, PHA, PLA, PHP, PLP). The 'FILL'ER
UP' program doesn't use the stack at all; we'll see an example
of manipulating the stack later. Along with the registers and
stack, you should keep a running list of the current values of
any memory locations used by the program. I make a chart with
the registers and memory locations labeled across the top. When
the program stores into a new location, I add a column for it.
Down the paper I enter the new value in the appropriate column
whenever it changes. Related changes should be entered on the
same line. You can make notes along the side at important
points. Here is what the first few lines of a chart for this
program looks like:

PPMII TRACING PROGRAMS PAGE 225

--
SP AC XR VR $01 $FB $FC $FD $FE

xx xx xx xx 37 00 00 00 00
34 34

FF FF
00 00 00
92 01 92
00 02 00
97 03 97
99 00

92
97

While it is not practical to write down ALL memory changes,
especially when the program loops, you can use this technique
as needed to record the important changes. Thus when you get to
a statement such as STA ($FB),V at $0837. you can determine
what the program will do. This statement uses what is called
INDIRECT, INDEXED addressing. The location given ($FB) is NOT
where the accumulator will be stored; instead. the two-byte
CONTENTS of this location are used as an INDIRECT BASE ADDRESS.
to which the current contents of the V-register (the INDEX) are
added. The first time this statement is executed the result is
to take $0092 and add $00 to get $0092. This is where the
contents of the accumulator ($99) will be stored. Indirect.
indexed addressing can only use the V-register for an INDEX;
the BASE ADDRESS must be in zero page $OOOO-OOFF (SOOFB in this
case).

Another type of addressing used in this program is absolute.
indexed by X. This is used at $0816. for instance. The term
absolute refers to a directly specified two-byte address
($08AO). The X-register is used this time as an index (V can
also be used to index absolute locations). Thus the contents of
X ($00) are added to the address $08AO itself (not the CONTENTS
of $08AO) to arrive at the address to load the accumulator
from. $08AO. X will be used to step through the pointer table
at $08AO. As the program executes further, X will be increased.
As long as we have been keeping track of the value of X. we can
always tell what pointer will be selected. This program uses
these pointers to mark the beginning and ending of areas to be
filled with $99. Some other programs may use tables of pointers
to jump into different subroutines at various points.

A third type of addressing used in this example is just called
indirect. This is illustrated by the JMP (SAOOO) at $086B. Note
that this does not involve any indexing. The two-byte contents
of $A002 point to the BASIC warm-start routine to jump to after
the program is done executing. Unlike this example. many times
a program will use different types of addressing in order to
make tracing more difficult. Be sure you understand the
different types of addressing.

PPMII TRACING PROGRAMS PAGE 226

Now let's look at an example which uses the stack in an
unorthodox way. When a program executes a JSR (Jmp to
SubRoutine), the two-byte address of the last byte of the JSR
statement is put an the stack. The hi-byte is pushed first,
then the lo-byte. Since the stack grows backwards from $OlFF to
$0100 these bytes will appear in the familiar lo-byte, hi-byte
order if you examine stack memory from a monitor. When the next
RTS (ReTurn from Subroutine) is executed, the address is pulled
off the stack, incremented, and used to jump back to accomplish
a return. It is very easy, however, to manipulate the stack so
that an RTS jumps you anywhere you like. Take a look at the
following code, which might be part of a boot:

1000 A9 4F LOA #$4F
1002 48 PHA PUSH THE 'A' ON TO THE STACK
1003 A9 FF LOA #$FF
1005 48 PHA PUSH THE lA' ON TO THE STACK
1006 20 90 10 JSR $1090
1009 4C 00 9F JMP $9FOO

1090 68 PLA PULL THE 'AI FROM THE STACK

.
10FE 68 PLA PULL THE 'A' FROM THE STACK
10FF 60 RTS

At first it looks like the program will do a JSR $1090 and then
a JMP $9FOO after it returns. This may lead you to think that
the entry point into the main code is at $9FOO. On closer
examination, however, we see that something else entirely will
actually happen. The first section of code pushes two bytes
onto the stack with PHA (Push Accumulator), namely $4F and $FF.
When it calls the subroutine at $1090, the address $1008
(return address minus one) is pushed onto the stack
automatically. The first thing the subroutine does is pull a
byte off the stack into A with PLA (PuLL Accumulator). The byte
pulled off will be the one pushed on the stack most recently,
namely the lo-byte of $1008, which is $08. Then the subroutine
does some other things, perhaps involving the value pulled from
the stack in order to make sure the subroutine was called from
the right location. Eventually, just before executing an RTS,
the subroutine pulls another byte from the stack. Now it has
wiped out its return address. Instead, the RTS will take the
next two bytes on the stack, which are the values $FF and $4F
respectively, as the address $4FFF. This is automatically
incremented to yield $5000. The program will jump to this
location instead of $1009 as we might think. The code at $5000
can do something with the accumulator right away if it wants to
ensure that this abnormal path was followed to reach it.

PPMII TRACING PROGRAMS PAGE 227

This stack technique can be used over and over to make tracing
more difficult. As long as you keep careful track of the
contents of the stack, however, you should be able to follow
the program flow through any number of RTSls.

My final example ties together several different concepts from
earlier chapters. It combines several different forms of
protection into one short routine. This multiplies the
difficulty and enhances the benefit of tracing it. Since it
deals with the disk drive, it offers a good chance to become
familiar with the KERNAL communications routines. Youlll also
find an undocumented opcode, a bit of decryption and a little
stack manipulation. Eventually there will be a custom DOS
routine involved too.

The routine will not actually run correctly since it depends on
some protection on. the disk, which we don't want to put there.
Thatls OK; it1s similar to a situation you might find yourself
in while tracing a program. By the way, it is designed to work
with a 1541 drive only. Since it communicates over the serial
bus, it may make other serial peripherals like printers do
funny things. The program is called ITRACE MElon the program
disk. If you load it in and disassemble it, here is what you'll
see (without the comments of course):

1000 AO
1002 AF
1003 80

1F LOY
???
???

#$lF Decrypt data table
Undocumented opcode

1004 10 59 BPL $105F
1006 80 ???
1007 10 99 BPL $OFA2
1009 80 ???
100A 10 88 BPL $OF94
100C 00 F4 BNE $1002
100E A9 OF LDA #$OF
1010 A2 08 LDX #$08
1012 A8 TAY
1013 20 BA FF JSR $FFBA SETLFS 15,8,15
1016 A9 02 LOA #$02
1018 A2 81 LOX #$81
lOlA AO 10 LOY #$10
101C 20 BO FF JSR $FFBO SETNAM at $1081-82
101F 20 CO FF JSR $FFCO OPEN file #15
1022 A9 02 LOA #$02
1024 A2 08 LDX #$08
1026 A8 TAY
1027
102A

20
A9

BA
01

FF JSR
LDA

$FFBA
#$01

SETLFS 2,8,2

102C A2 83 LOX #$83
102E AO 10 LOY #$10
1030 20 BO FF JSR $FFBO SETNAM at $1083
1033 20 CO FF JSR $FFCO OPEN file #2
1036 A2 OF LOX #$OF
1038 20 C9 FF JSR $FFC9 CHKOUT select #15

PPMII TRACING PROGRAMS PAGE 228

103B AO OB LOY #$OB
103D
1040

B9
20

83
D2

10
FF

LDA
JSR

$1083,Y
$FFD2

Message at $1083-8D
CHROUT (PRINT#15)

1043 88 DEY
1044 DO F7 BNE $103D
1046 20 CC FF JSR $FFCC CLRCHN deselect 15
1049 A2 OF LOX #$OF
104B 20 C9 FF JSR $FFC9 CHKOUT select #15
104E AO 06 LOY #$06
1050
1053
1056

89
20
88

8E
D2

10
FF

LDA
JSR
DEY

$108E,Y
$FFD2 CHROUT (PRINT#15)

1057 DO F7 BNE $1050
1059 20 CC FF JSR $FFCC CLRCHN deselecl #15
105C A2 OF LDX #$OF
lOSE 20 C6 FF JSR $FFC6 CHK!N select #15
1061
1064
1065
1068
1069

20
48
20
48
A9

CF

CF

02

FF

FF

JSR
PHA
JS~
PHA
LDA

$FFCF

$FFCF

#$02

CHRIN (GET#15)
Push byte on stack
CHRIN (GET#15)
Push byte on stack

.06B 20 C3 FF JSR $FFC3 CLOSE 2
106E A9 OF LDA #$OF
1070 20 C3 FF JSR $FFC3 CLOSE 15
1073 4C CC FF JMP $FFCC JUMP to CLRCHN

DATA TABLE FOR DISK ROUTINES

1080 AS EC 95 86 95 85 90 96 .UFUEPV
1088 85 95 85 97 EO 88 E7 A7 EUEW.H.
1090 A5 Bl F7 88 E8 08 El 83 .H.H.C
1098 9A CO 38 97 21 7D 17 63 Z;W!.W.

This piece of code might be part of an autoboot or it might be
more deeply buried. Let us suppose you have done a little bit
of detective work to get to this point. All of a sudden, you
run into the code at $1000 above. A few lines of ??? tends to
shake your confidence in your work so far. You may have slipped
up earlier and gotten off the track, in which case you could be
wandering around in irrelevant code till you drop. This is a
good reason to keep track of how you arrived at a particular
point - you may want to backtrack and double check your work.
On second glance, though, things look better. Most of the code
seems to be there, and all those KERNAL calls have got to be
important (remember the essentials of a protection scheme from
PROGRAM PROTECTION VOL. I). You might be tempted at first to
ignore the 'bad' code and go on to the code you can read. This
will prove interesting but ultimately you will have to come
back to $1000 to really figure out what is going on.

Line $1000 looks to be good itself. The problem lies in the
opcode $AF at $1002. Since it is listed as ???, it is not a
documented 6510 opcode. Luckily, you have this book with its
chapter on undocumented opcodes. Turning there you find that

PPMII TRACING PROGRAMS PAGE 229

$AF is a simple LDAX Absolute (from a general memory location).
This loads both the A and X registers simultaneously from the
same absolute memory address. Absolute addressing implies two
operand bytes, so the next instruction starts at $1005. If you
try disasemb1ing $1005, 10 and behold all the rest of the ???I S

have dissolved into normal code. Here is a composite disasemb1y
of this first section of code:

1000 AO 1F LOY #$lF
1002 AF 80 10 LOAX $1080 UNDOC. OPCODE
1005 59 80 10 EOR $1080,Y
1008 99 80 10 STA $1080,Y
100B 88 DEY
100C DO F4 BNE $1002

Now is a good time to review the EOR instruction from the
encryption and decryption chapters, since that is the purpose
of it here. This section of code obviously decrypts something
at $1080-9F. We could stop and do the decrypting ourselves, but
this routine is simple enough to modify so that the computer
does the dirty work for us. Put a BRK ($00) at $100E with your
monitor and then execute the routine with G 1000. When you
return to the monitor, you ' 11 have the decrypted version (don't
forget to take the BRK back out). Still, it wouldn't hurt to
trace a couple of times through the loop for practice.

If you want to leave the code in its decrypted form, this can
be easily done. The value used in the EOR operation is located
at $1080. If you change that to $00, it will EOR the bytes with
$00 whenever you execute it. Recall from the EOR discussion
that EOR'ing with a $00 value doesn't alter the other input, in
this case the already decrypted bytes. In fact, you can replace
the undocumented opcode too. All it does is load the A and X
registers. Looking down a few lines in the code, X is directly
set to $08 at $1010 with LOX #$08. This means that any value
put there by the undocumented code will just get wiped out
anyway. Therefore, the only real purpose of it is to load the
accumulator. So we can replace the $AF opcode with an $AD which
gives us the regular instruction LOA $1080. This will make the
listing easier to read since the ???'s will be gone.

Now for the heart of the routine. You should be somewhat
familiar with the KERNAL SETLFS (Set Logical File
Specifications, $FFBA) and SETNAM (Set Name, $FFBD) routines.
They are often seen just before a call to LOAD ($FFD5),
naturally enough. Here they are used a little differently. The
OPEN ($FFCO) KERNAL routine is just like the BASIC OPEN
statement, in this case OPEN 15,8,15, 'MESSAGE'. SETLFS and
SETNAM simply set up the 15,8,15 and 'MESSAGE ' part, while OPEN
does the actual opening. Note that the 'MESSAGE' part is in
memory at a location pointed to by the X and Y registers (10
and hi-bytes, respectively) at line $1018. The accumulator
holds the length of the message, which is NOT a file name in

PPMII TRACING PROGRAMS PAGE 230

this case. It is simply a command which will be sent out to the
drive when the OPEN is executed.

What is that message? Well, if you've decrypted the code like
you should, you know the answer to that question. For those
cases that are a little harder to get the decrypted version out
in the open, 1 1 11 pass along another tip. Notice the device
number ($08) in the call to SETLFS ($FFBA). The communications
routines are very general purpose routines capable of
communicating to many drastically different devices in the same
way. In this case, if we merely change the device number to
#$03, the 'MESSAGE' will be printed to the screen instead of
the drive! Sometimes this goes past too fast. so if you change
the device to #$04 instead. you'll get the message on the
printer! Pretty slick, huh? Of course, some of the messages
sent may not be in ASCII, in which case the printer or screen
may do some strange things.

Just as in BASIC, when you OPEN a file it stays open until you
close it. However, only one file can actually be sending or
receiving information at a time. This is just like the
situation in BASIC with the CMD statement, if that helps you
any. When we follow the first OPEN process with another one as
we do in this routine, the second file takes precedence and the
first one is Ide-selected'. The second OPEN statement
corresponds to OPEN 2,8,2,IMESSAGE'. Again I leave it to you to
find out what this message is.

Following this second OPEN, we encounter an important KERNAL
call at $1038, to CHKOUT (CHannel OUT. $FFC9). This routine
re-se1ects a previously OPENled file, for output. In this case,
it is file 15. Now we can send information to the drive over
this channel. This is accomplished with the loop at $103B-45.
This loop retrieves a byte from the decrypted data and sends it
to the currently selected file (15) using the CHROUT (CHaRacter
OUTput, $FFD2) routine. IMPORTANT: the message sent will not be
acted upon until you CLOSE the file OR call the CLRCHN (CLeaR
CHaNnel, $FFCC) routine. This can cause frustrating problems if
you forget it. If you plan on using the file again, use CLRCHN
and you won't have to go through the whole OPEN process again.
We are going to use file 15 some more, so we CLRCHN at $1046
and the re-se1ect file 15 with CHKOUT ($FFC9) immediately.

Another message is sent via a CHROUT ($FFD2) loop, and then we
CLRCHN again. This time, we're going to use our file for input,
so we call upon the CHKIN (CHannel IN) statement to select it
for INPUT. Finally, we get two bytes from the drive by calling
upon CHRIN (CHaRacter INput, $FFCF) twice. This is like a BASIC
GET#15 statement. The byte is returned in the accu~u1ator each
time, so the $64,000 question is, what does the routine do with
the value in the accumulator? Answer: it pushes it onto the
stack where it will stay safely parked during the next
operations.

PPMII TRACING PROGRAMS PAGE 231

The routine ends by calling CLOSE ($FFC3) to CLOSE files 2 and
15 for good. Finally, it JUMPS to CLRCHN at $FFCC. Notice the
use of JMP rather than JSR. What are we to make of this?
Remember that all the KERNAL routines are designed to be used
like subroutines, so they end with an RTS instruction
eventually. The RTS is supposed to return them to the location
past where they were called with JSR. Now since JSR was NOT
used, the RTS will instead pull off the first two bytes as in
the stack example we saw earlier. Thus the net effect of the
whole routine is to do something with the disk drive (we don't
really care what) that results in it sending us two bytes,
which form the address to return to. This may be the main
entrance point of the program, or another protection check
routine.

It looks like we can bypass this routine entirely and go
straight to the next one from now on - if we can figure out how
to get the information off the stack to decide what the next
address is. That I leave to you to figure out. In a real
program you should be sure and check that something set up in
this code isn't checked later on, such as the state of the disk
drive. The program actually is designed to work with a custom
DOS routine (such as in the CUSTOM DOS chapter), which could do
just about anything. Basically, all we care about normally is
the computer side of things.

As I said at the start of this chapter, the basic idea in
program protection is to link the functioning of the program to
some physical object, in this case the original disk. Usually
this link is very simple; it consists of a 'key' value or
values returned from the disk drive. It really doesn't matter
what type of protection is on the original disk or how the
drive checks for it. What is important is the key value, which
will be checked or used by the program. Once we find the key,
we can unlock the program.

This concludes our introduction to tracing programs. Tracing is
a time consuming way to break programs, but it is useful as a
last resort or when you want to find out just what a program
does to protect itself. Experience is important when you are
tracing programs, and the only way to gain experience is
through practice. Think of the time spent as an investment in
the future.

PPMII TRACING PROGRAMS PAGE 232

PROTECTING YOUR OWN SOFTWARE

In this chapter we will recommend some methods of program
protection that you may want to use on your own software. All
the methods contained in this chapter will make use of the
principles that you have learned throughout this book. First,
offer a duplicate disk to the legitimate purchaser at a
reasonable price. This way it will not be necessary for the
legitimate user to break your software in order to obtain an
archival copy. This may very well be the best deterrent to
software piracy. Second, take the time to evaluate the
protection schemes used by other programmers. Many times an
important concept may be gained by examining other protection
schemes. Third, evaluate just how much protection you feel your
product requires. If your are writing a specialized program
that requires sophisticated documentation very little
protection may be required. On the other hand, if your program
is the hottest new game or utility it may be of upmost
importance to spend some additional time and money to properly
protect your investment.

We have heard of more than one programmer who, through their
own careless actions, have let unprotected and un-copyrighted
versions of their programs slip from their possession. Once
this version of the program hits the user groups it somehow
becomes 'public domain'. This relates back to the earlier
chapters on trade secrets. If you feel your program is worth
writing, it should be worth protecting.

How much protection is enough?? How much is too little??
These are tough questions to answer. If you spend an adequate
amount of time protecting your product, it may take several
weeks or even months. The time that you spend protecting your
software may be of no value if the product does not sell or if
someone else beats you to the market place with a similar
product. Another very important concept to consider is: If you
design a really great protection scheme what happens if it can
not be duplicated by the mass duplication machines? Most
commercial disk duplication equipment is locked into a few
standard protection schemes. So, before you spend weeks or
months trying to integrate a protection scheme into your
program be sure that it can be mass produced. Very much of
today's disk duplication equipment is too limited in its
ability to duplicate heavily protected software. We have been
quoted a price of over $4,500.00 just to produce a single
master disk from a commercial disk duplicator. Mind you, this
was just for the first disk!!! Each additional duplicated disk
would be an extra cost. This was in addition to the cost and
time that we had spent in developing the scheme originally.

PPMII PROTECTING YOUR OWN SOFTWARE PAGE 233

Each software author must make a tough decision on which method
is the best for himself. Do you decide on an easy to duplicate
scheme (which is also easy for the pirate to copy)?? Do you
spend $5000.00 or more on developing the scheme yourself?? Do
you pay someone to develop your protection for you??? O.K.
enough questions, let's have some answers.

If you choose an easy-to-duplicate and easy-to-produce
protection scheme, you can be sure that it may be easily copied
by anyone that has a nybble copy program. If your program is
not going to be a very big seller, this may be the way to go.
Don't invest much money in protection and don't risk much money
in getting it to market. Keep in mind that if the program does
become a best seller you may lose many sales to the software
pirates. If the program does not sell the pirates aren't going
to want it either.

If you choose the second route and adequately protect your own
software, be sure to evaluate the time that you are going to
spend in protecting it. If it takes you a month to write, debug
and implement your protection scheme, you may be wasting
valuable time and money. The time that it takes you to
effectively protect your software maybe better spent by hiring
someone who is proficient in program protection and spending
your time doing what you do best (namely writing software).
Remember, it takes much more time to properly integrate a
protection scheme into an program than most people ever
realize. Be sure to allow yourself adequate time in the
development phase of the program to protect your program. Many
times the graphics, sound or file handling of the program is
turned over to specialists; it may pay to do the same with the
protection scheme. If you choose to do your own program
protection be sure to plan for the protection just as you plan
for the main program. Don't make your protection scheme an
after thought. Many programmers spend months writing a super
program, only to spend days on the protection scheme. Don't be
caught short, plan your protection strategy from the beginning.

Now that you have spent a month or more protecting your program
be sure to re-evaluate your protection scheme. What may have
sounded like a good idea just a month ago, may now be obsolete
due to a new copy program. If you are going to protect your
software do a good job (any job worth doing). Take the time
to learn the tricks and take more time to stay current. Program
protection is an ever-changing field. What was STATE OF THE ART
just a few months ago is now obsolete.

Keep in mind that any scheme may be defeated. Sooner or later
someone will break it or a copy program will be written that
will copy your protection scheme. Remember: THERE IS A LARGE
GROUP OF PEOPLE THAT CONSIDER PROGRAM PROTECTION TO BE THE
ULTIMATE ADVENTURE GAME. These are the folks who don't buy your
software for the program, they buy it because of the protection
scheme. These are the professionals at program protection. They
break the protection scheme for the fun of it. It can be quite

PPM I I PROTECTING YOUR OWN SOFTWARE PAGE 234

a thrill when one first breaks an extremely difficult program
protection scheme. For many people it is more satisfying to
break the protection scheme than it is to play the game!! These
are the folks that can make your job as a program protector
frustrating. They may be more knowledgeable than you in the
area of program protection. So after you spend a month or so in
protecting your program and you come up with the ultimate
scheme don't be surprised if it gets broken very soon. Many
program protection schemes have been adequately thought-out in
most respects, but not all! Virtually every scheme leaves a big
gaping hole in its protection. Many schemes are terrific in all
aspects but one. It is this one hole that someone interested in
breaking the program will find. So much for your ultimate
protection scheme.

Too many programmers rely on the disk duplication company to
provide the protection scheme. Some disk duplicators are so
eager to get your duplication business that they will 'give'
you a protection scheme. You may be sure that the scheme that
you receive will be very similar to other schemes produced by
the same duplicator. Most companies have their own form of
protection to offer the software author. These schemes are
often based upon the capabilities of the duplication equipment
rather than on the needs of the software author. Be advised
that if you rely on the disk duplicator to provide you with the
protection scheme you may not be getting your money's worth
(even if they give you the scheme for free). Most disk
duplicators are specialists at their business - disk
duplication. They may not be specialists in program program
protection (most are not).

The third choice for the software author is to rely totally on
some other party for the program's protection. This would be
someone who is proficient in program protection. Program
protection is their business, that is their specialty. This may
be a reasonable alternative for the software author. The
software author will do what he does best (write programs) and
the program protector will do what he does best. This sounds
like a match made in heaven doesn't it?? Well, it may not be.
As with any relationship between two parties there may be
problems. First, there is the problem of trust. Can you, as a
software author, trust your program to a stranger for its
protection? Second, will the program protection conflict with
the actual program? This is extremely important and sometimes
difficult to verify. There may be some small interaction
between the program and its protection scheme that may not be
obvious at first. This may cause all sorts of problems a later
date. Third, is the person that is going to protect your
program capable of doing the job properly? Be sure that the
person that you select does the job and does it right. Get a
protection scheme that is unique and state of the art, not
something that has been used many times before and is already
obsolete. Ask for a sample protected disk and examine it
yourself, if you feel qualified, or else have a knowledgeable
friend look at it. Take it to the real experts: buy several

PAGE 235PPMII PROTECTING YOUR OWN SOFTWARE

good copy programs and try them out on the sample. The money
spent may well turn out to be a wise investment (this advice
applies to your own protection schemes as well). One more
thing: as in all business deals, be sure that you can trust the
party that you are going to be dealing with.

Finally there is the concept of how much is enough. Remember to
evaluate your program and its protection needs. Then make a
sound and practical decision as to how much protection is
actually required, both in time and money invested in the
protection scheme. Once you have determined your needs, proceed
with those thoughts in mind during the development of the
program. Build the program1s protection into the program as you
go, don't add it on later. If your program is not going to be
very popular and it only appeals to a small group of people you
may not want to protect it at all. Most people are honest and
will be more than happy to pay for a legitimate copy of a
program that they really want. Many people that we know will
buy the original program even if that person obtains a broken
copy elsewhere. They buy the original for the documentation and
they buy the original for the personal satisfaction of knowing
that they are doing what is right. They may have obtained a
broken copy (illegally) just to see if they like the program or
not. Then, if they like the program they will gladly pay for an
original. Most broken software that ;s passed around
(illegally, of course) would not have been bought by the person
receiving it if that was the only way to obtain a copy. They
may get a copy of your program on a disk with twenty other
programs, none of which they really have any use for. It seems
that some people are just collectors, they just want a copy of
everything. These are the folks who wouldn1t know how to use
your software even if they had purchased it with all the
documentation!!! Some of the illegal copies being made today
are taking away from the sales that a software author should
have, but most are not!! So spend some time and evaluate your
needs and your budget. Don't spend every cent that you can on
protection, especially if the protection scheme detracts from
the useablitiy of the program.

Now to the nitty-gritty of protecting your own program. If you
decide to protect you program use every technique that you can.
Just don't overlook the most effective tool available to you as
a program protector: PSYCHOLOGY. Use the psychological aspect
of program protection to your advantage. Many programs may be
easily broken if it were not for a few well placed bits of
code. This code is truly bogus; it does not function at all. It
just looks like it should do something, possibly check the disk
for an error, but the program never uses this code. Its whole
purpose is pose a psychological barrier to the pirate. The code
is left where it may be easily found by anyone examining the
program. The experienced pirate will immediately try to defeat
your code and then try the broken copy. It won't run, because
the protection scheme that the pirate found and disabled is not
even used by the program. Another psychological tool that may
be used is simply letting the pirate know that what he is doing

PPMII PROTECTING YOUR OWN SOFTWARE PAGE 236

is not right. Appeal to the nobler aspects of the pirate - it
may work! (then again it may not). DON'T, under any
circumstances, DON'T put in any snide comments or wisecracks
aimed at the pirate. They don't work and they only serve to
encourage the pirate. Personal insults have not served any
useful purpose during all of civilized history, so don't think
that they will do any good in your program. They won't.

If you are going to protect the program yourself, you need to
start somewhere. First decide on a method of protection; half
tracks, nybble counting etc. Then be sure that the method
selected may be mass duplicated. Base your whole program around
the thought of implementing the protection scheme. Once you
have made your decision use every tool available that may
hinder or prevent the pirate from getting your software. Use
some of the older and possibly forgotten techniques to protect
your software. Many times the pirate is expecting a more
sophisticated program protection scheme that actually exists
and he will overlook the obvious.

Don't just change one byte of code, change fifteen or twenty
bytes of code. Make the pirates earn their treasure. Too many
programmers give their programs away by not adequately
protecting their disks. Modify the disk directory so that it
will become unlistable or enter an endless loop (see the
PROGRAM PROTECTION MANUAL VOLUME I). Change the name of the
disk, the 1.0. and the 2A to unprintable characters. Add a few
bogus programs to the disk in order to trip up the file copy
programs. These can be programs that will put the drive in an
endless loop or send the drive to bad blocks. Add the special
characters after the first $AO in the program name. Use program
names which are as unique as possible ($00, 03).

Use a number of programs that load prior to the main program.
Have your BOOT program load another program. This program will
check the protection, store a few values in memory and load
another program. The third program will store a few more values
in memory and load another program. Then have the fourth
program check the protection again, store a few more values in
memory and load the main program. The main program will contain
a number of places that check to see if the proper values have
been stored in memory by the prior programs. Have the main
program check the disk to see if any bytes have been changed in
the directory. If they have, cause the program to crash. It is
possible to put so many small protection schemes on the disk
that almost any pirate will go crazy trying to find them all.
Buy a good BASIC compiler and have some of your code in
compiled BASIC. It is not usually worth the time to decipher
the compiled code.

Use a protection method on the disk that will not cause the
drive to beat the R!W head against the end stop. DON'T USE BAD
BLOCKS. We have given you many different routines in this
manual that will allow you read exotic protection schemes. Use
one or more of them. The protection methods presented herein

PPMII PROTECTING YOUR OWN SOFTWARE PAGE 237

are viable and effective. Just be sure that your disk
duplicator can handle the scheme that you choose.

I hope that you get the drift of what I am trying to say. Make
the disk so hard to crack that the pirates will have to wa~te a
whole lot of time trying to break your program. If you set the
program up properly it will not be worth the time required to
break it.

Try to find a disk duplicator who has a programmable disk
drive. Save the information to the disk in such a manner that
it cannot be copied by the 1541 disk drive. The 1541 disk drive
has a few hardware limitations, such as a 'wide R/W head that
will not allow adjacent tracks and half tracks to be properly
written. Density changes may be a subtle way of protecting a
disk. Nybb1e counting can be very effective especially if the
speed of the drive writing the data is slowed down slightly.
Synchronized tracks may easily be done by virtua1y any
commercial duplicator (NOTE: they also appear to easy to
reproduce on the 1541 even though no copy program is currently
doing so). Use any of the methods mentioned in this book or
better yet use ALL of the methods mentioned here. Use some of
the tips contained in the PROGRAM PROTECTION MANUAL VOLUME I to
protect your software. Use some ideas of your own. If you have
to borrow the techniques used by other programmers, thatls OK.
Remember it is not the idea that is copyrighted, it is how the
programmer expressed the idea (don't pirate someone e1se l s
routine). Finally change the IA I to an lEI in the BAM (track
18, sector 0). This can be the good deterant to the novice
pirate.

One of the biggest problem that software authors have today is
called the MODEM. Once a program is broken and placed on a
bulletin board the program can travel across the country in a
few days. Anyone can down load your program in a matter
minutes. If the program is set up so that it needs many smaller
programs to load it into memory and it needs to see special
information on the disk, then most of the time if it does get
broken it will not go very far. If you can keep the pirates
from placing your software on the bulletin boards it will be
worth the extra time taken to protect it.

Any program can be broken. Any protection scheme can be gotten
around. Sometimes the protection scheme will provide a
challenge to the pirate. Sometimes the pirate will place a
greater value on his time than he does on your program. At any
rate, donlt give your software away. Make the pirate work for
the treasure.

PPMII PROTECTING YOUR OWN SOFTWARE PAGE 238

"- The fo 11 owHh
1earnll.",:e~~
MEMORY '.tlt8'~3t;(Ttt':t,·.,·f
k nowledge:'P'ft->gtammi "9:'11\'1,,..,"-:
the' i nfor1lul1;i on present.ed hete.
fo'-the- advanced EPROM progr~m~r
th.ir knowledge of memory chips.

ftt~d for those who wish ~o
=t<:ture I and theory of
" -.sented as general

,.equire that you know
.~OT ••tion is presented

'~.$.',·wno wi sh to expand
-~ ,~c~,,(~~ :-~t<':· .:.' ','

A11 you wi 11 need to know about prog....... ing EPROMS is
presented i nthe chapter on PROGRAMM:lNG lPtl.M$.. and in the
PROMENADE manual.. You will al $0 find' . sOllle"'1.,1al in the
latter section of the chap.... on ADVANCED EPR'OM PROGRAMMING
that may prove useful as a supplement to the PROMENADE
manual.

Don't let these chapters scare you off!! EPROM prOgramming is
fun and easy. You don't even need to read this chapter. to
program EPROMS successfully. We are presenting this material
for those who wish to learn more about the evolution and
design of MEMORY CHIPS.

'!'

,<;;

•

PPMII R£,AD·Oltt Y MEMORY' PAGE 'Z39

READ ONLY MEMORY

A READ ONLY MEMORY (ROM) . is a~ LSI (large-scale
integration) circuit consisting of an· array of semiconductor
devices such as diodes, bipolar transistors, or·FETs which
are-connected to perform a particular-set of switching ~.

functions. ROMs are available i~ ftveb~sictypes: mask
programmed ROM-s; programmabl e ROMs. or PROMs; and eras ab Ie
programmable ROMs, EPROMs and EEPROMs; electrically<alterable
ROMs, or EAROMs; and nonvolatile random-access memory, or
NVRAM.

A ROM is a form of memory which contains a fixed set of
data that can be read in a similar way as RAM. ROM ts
primarily used for stort~g information which isn't subject to
change. This typeof·me,fD():r~.;contains no mechanism to enable
the user to alter tb',<lata~toredat a particular address.

Unl i ke RAM, the.removalofpower from the ROM does not
alter .its contellts~ It:Wasftt',t:biS.reason ROM became very
popu I ar. with the· introductiOrt·,:·~.€,·,dedtcated mi croprocessor
systems. The system's program waS$<j:li;jI;ed.·1n ROM,-and the data
was stored i n RAM ~. ' . ."

The· fi rst ROMs contai ned an array Of'eellS 'HI which. a
series of l's and a's was created using a metallized mask.
Mask programmed ROMs are permanently programmed at the time
of ~anufactureby adding or leaving. out diodes or
transistors. The user had to supply the manufacturer with a
truth table on punched cards or tape, and a computer
generated a ma~k for the ROM which would give the desired
truth table.

Some of the more tYi1icalllJes for ROMs are: as a code
con ve r t er ,11k e i n pr i ntat i nterrae.s; asal 00 k up tab 1e ; as
a character ~anerator; as a keyboard encoder; or as a logic
gate replacement, like the 64's PLA me-morymanagement chip.

The major drawback to using ROMs a~e the set-up charges.
The tooling costs for ROMs is quite high u~less us~rs plan on
u;sl'ng large volumes of the same ROM. It can cost several
thousand dollars to develop a mask for a single ROM.

To counteract the high set-up costs of ROMs,
manufacture~s developed PROMs, or user-programmable ROMS.
PROMs come with a diode in every position. Each diode. is a
fusible link which can be "blown" with a PROM burner
leaving a 1 in the corresponding bit position. This type of
PROM was preferred over nichrome-fuse PROMs which tended to
regrow, changing the programming with age. PROM programming
is permanent, reading just like a ROM once programmed.
Progr~mming errors could not be corrected. so mis-burned
chips>nad to be discarded. One advantage to PROr~s was that
they provided a low-cost way to develop computer firmware for
low vol umep:roducti ons.

The incre••ed need for low-cost, ~ser-programmable ROMs
led to the develfi.pment of an erasable, MaS-technology PROM, ...
or EPROM. This type of ROM uses charge-storage programming to
s tore the t rut h tableof 0' sand 1. 1 S •

This chip was packaged in a ceramic DIP package with a

PPMII READ ONLY MEMORY PAGE 240

i
~ _....I

quartz window used for exposing the chip to high intensity,
short-wave ultraviolet light. The high energy UV photons
collided with the EPROM's electrons causing the stored
charges to leak off, erasing the EPROM.

The EPROM wasn't intended for read/write operations, but
it became very useful for prototyping and other applications
where data needed to be altered several times. Initially,
EPROMs were popular in development labs, but as production
costs decreased, EPROMs began to be used in medium and low
volume production applications. The major disadvantages to
EPROMs is the need for an external programmer, and having to
erase and reprogram the entire chip to alter a single byte.

The latest advancement in the ROM field is the
user-programmable; electrically erasable ROM, or EEPROM. The
major advantage to this type of device is the ability to
alter the non-volatile memory while it is still in the host
circuit. Removal and exposure to ultraviolet light is no
longer necessary. Some types of EEPROMS can even be
programmed using the standard TTL (+5 volts) voltage levels.
This type of ROM even allows the erasure of single bytes
without the need to erase the entire chip.

EEPROMs are opening up new applications in many areas.
EEPROMs are used in digital instruments for calibration and
diagnostics. If the instrument drifts out of calibration, the
contents of the EEPROM can be changed to compensate for the
drift. EEPROMs are also used as non-volatile look-up tables
in remote scanning terminals, programmable controllers and
data loggers.

The electrically alterable ROM, or EAROM, has several
features of the EEPROMs. Individual addresses within the
EAROMs can be reprogrammed electrically, as with the EEPROMs.
EAROMs are quite slow, up to 600 ns access time, and the
fabrication process is complicated and expensive. As a
result, the cost of EAROMs has remained high, and they are
only available in low densities.

Another type of nonvolatile memory, the NVRAM, is
sometimes confused with EEPROMs. The NVRAM contains RAM, with
a duplicate bank of EEPROM. The memory operates as
conventional RAM until the power is removed. On power-down,
the chip uses a power-down routine to transfer the contents
of RAM to EEPROM. The process is reversed when power is
returned. It takes from 1 to 5 microseconds to transfer
EEPROM to RAM, and about 20 milliseconds to store data into
the EEPROM. The major disadvantage to NVRAMs is the
requirement of nine transistors to store a single bit, versus
two for EEPROMs. This is one reason that NVRAMs are the least
dense of all memory technologies. By the end of 1985, EEPROMs
are likely to be available in densities up to 256k, whereas
NVRAMs probably won't exceed densities of 16k.

There are three families of MaS technologies - CMOS,
PMOS and NMOS. The family types refer to the type of MaS
transistors which are used in the circuit. Figure 1 shows the
structure of the three MaS families.

ppru I READ ONLY MEMORY PAGE 241

FIGURE 1

GATE

'---l...-..J£.-....).'---L-../
f < J .~F.O.

N-SUBSTRATE

PMOS

P-CHANNEL

OEVICE

GATE GATE

. 'O,~, ¢q ,~, . "-'.,L M'.

d- k ~
1 P .

A'"''
__ ""'+~ I\' P.. .

I '--- '------' . I

I ""m) II ::"u,"",
CMOS

PMOS ICs use p-channel transistors which are created by
diffusing Boron into an n-type silicon substrate to form the
source and the drain of the transistor. They are also called
p-channel because the channel is composed of positively
charged carriers.

NMOS ICs are similar to PMOS, but they use phosphorus or
arsenic to make n-channel transistors in p-type substrates.
N-channel ICs have channels which are composed of negatively
charged carriers.

CMOS or Complementary MOS ICs utilize both p-channel and
n-channel devices on a common substrate. Either p- or n-type
substrates can be used, but areas of the opposite substrate
(wells) must be present to create the complementary
transistor type.

Most early memory devices were made with PMOS circuitry.
The demand for higher speeds and greater densities lead to
the development of NMOS ICs. NMOS ICs are inherently faster
due to the greater speed of the n-channel electrons. The
majority of memory devices in production are fabricated with
some type of NMOS technology. The use of CMOS technology in
memory has become widespread because of the very low power

PPMII READ ONLY MEMORY PAGE 242

NMOS

N-CHANNEL

OEVICE

consumption, noise immunity, and temperature insensitivity.
However, CMOS's slow speed, and the high cost to produce two
transistor types on a single substrate, has limited their use
to those where the advantages justify the cost.

FABRICATION

The fabrication process for most types of memory
technologies is quite similar. The next section describes the
fabrication process of the new n-channe1 HMOS circuit. This
type of cell is primarily used in 5 volt memory devices.

The MOS IC fabrication process begins with a 100
millimeter diameter, half millimeter thick slice of a single
silicon crystal. The silicon slice is then oxidized in a
furnace at a temperature of 1000 degrees Celsius to develop a
layer of silicon dioxide on the surface. The silicon dioxide
is used as an insulator between layers, and it resists
diffusion (furnace operations). However, there are certain
areas in which diffusion is desired, so the silicon dioxide
must be removed with hydrof10uric acid. Silicon nitride is
used as a photoresist because it resists etching by
hydrof10uric acid. A photographic mask is placed over the
silicon dioxide, and silicon nitride is deposited on the
exposed surface in a gas-phase chemical reactor. When the
photoresist (silicon nitride) is exposed to ultraviolet
light, it polymerizes. Subsequent washings in the appropriate
solvents removes the polymerized areas. If the crystal is now
exposed to hydrof10uric acid,' the silicon dioxide will remain
in the areas protected by the photoresist, and will be
removed in unprotected areas. Since this is a photographic
process, the mask openings can be very small and located very
accurately so that many components can be placed on a single
chip. Usually masks are produced from large scale drawings,
which are photographically reduced.

The first pattern defines the regions where the
transistors, capacitors, diffused resistors, and first 1eve 1
interconnects will be made. Figure 2 shows a wafer after
completing the first etch.

FIGURE 2

ETCHED
AREAS! NITRIO!: ~"""", M\

OXIDE--::7

P-IUBSTRATE

PPMII READ ONLY MEMORY PAGE 243

3

Next t the wafer is implanted with accelerated boron
atoms. The boron will only reach the silicon substrate where
the nitride resist and oxides have been etched awaYt exposing
p-type areas which will electrically separate active areas.
After implanting t the wafers are oxidized again. The oxide
only grows in etched areas because silicon nitride acts an
oxide barrier. When the oxide is grown t some of the substrate
is dissolved creating a physical as well as electrical
isolation from adjacent devices. The remaining silicon
nitrides are removed t and the wafer is etched again to remove
the second layer of oxides t leaving a field oxide. Figure
shows the result of the nitride removal and the second etch.

FIGURE 3

NITIIIDE _ FII!LD ox

, + '-IUIIITIIATE , +

Once the active regions have been defined t the
transistor types need to be determined. Another pattern is
laid over the wafer to define any special characteristics t
and the wafer is implanted with dopant atoms. The dose and
energy at which the atoms are implanted determines the
characteristics of the transistor. The type of dopant
determines depletion mode (n-type) or enhancement mode
(p-type) operation.

After the transistors are defined t the gate oxides are
deposited. Care must be taken to avoid contamination or
defects in the oxide to ensure uniform thickness of the
oxide. If the thickness of the oxide varies t the
characteristics of the component won't be uniform. The gate
oxide is then masked and holes are etched to allow for direct
gate contacts. Next t the wafers are covered with a poly
crystaline silicon gate material in a gas phase chemical
reactor. The gate material is then doped with phosphorus to
reduce the resistance to 10-20 ohms. The gate layer is then
masked to define the transistor gates and interconnects.
Figure 4 shows the wafer after the gate material has been
deposited.

PPMII READ ONLY MEMORY PAGE 244

FIGURE 4

POLYSILICON

P-SUBSTRATE P +

The wafer is then coated with arsenic or phosphorus to
form the drain and source junctions. Then the wafer is
oxidized with a layer of silicon dioxide to seal the
junctions from contamination. Figure 5 shows the wafer after
being sealed with silicon dioxide.

FIGURE 5

To minimize capacitance and provide insulation between
the layers and metal interconnects, the wafer is coated with
a layer of glass. The glass is patterned with contact holes
and the wafer is placed in a furnace to smooth the surface.
The metal interconnects are usually aluminum or
aluminum/silicon. The metal is deposited on the wafer
defining the interconnect patterns and bonding pads. The
wafers are then covered with a low temperature alloy to
insure good contact between the aluminum and polysilicon.
Figure 6 shows the wafer after the circuit completed.

PPMII READ ONLY MEMORY PAGE 245

FIGURE 6

The circuit is now complete, but the metal is very soft
and the circuit is susceptible to contamination by moisture.
To protect the circuit, the wafer is coated with silicon
nitride or a silicon and phosphorus oxide composite. The
final step in the fabrication process is patterning for the
bond pads were the external connections will be made.

EPROMs and EEPROMs are fabricated with the same general
process, but EEPROMs have a double poly structure instead of
a single poly structure. The double poly structure is
patterned after the second nitride layer is deposited. The
double poly structure requires the formation of a capacitive
floating gate node which stores the cell charge. Figure 7 is
an example of a double poly structure device.

FIGURE 7

SiCONII-LEVU
fI~ST LEvel -lit; POl~SllICIlII

POLYSIL'CON
(FLOATING, "" --

GATE O"OE

• SUas'RATE

When fabrication is completed, the wafers are tested.
Each circuit is individually tested under operating extremes
to determine which circuits will operate reliably in normal
use. After testing, the wafer is cut into the individual
circuits. Circuits which pass testing are sent to packaging,
and the faulty circuits are discarded.

There are two types of packaging: hermetic and

PPMII READ ONLY MEMORY PAGE 246

non-hermetic. Hermetic packages consist of two ceramic halves
sealed with glass, or ceramic packs with metal lids.
Non-hermetic packs are usually molded plastic.

The ceramic package consists of two parts, the base and
the metal lid. The base contains the leads and the cavity in
which the finished circuit will be placed. The base is placed
on a heater and the circuit is bonded to the base with a low
temperature alloy. Next, wires are bonded to the circuit and
to the leads. Finally, the package is placed in a dry
atmosphere and the metal lid is soldered to the base.

In a plastic package, the circuit is bonded to a pad on
the lead frame and is connected to the leads with gold wires.
The frame then goes to a mold injection machine and the
package is formed around the lead frame. After packaging, the
circuits are retested and sorted according to speed and power
consumption. The finished circuits are labelled with circuit

having speed of 400ns which manufactured the

type and date of manufacture. For example:

027640-4 :type and speed
8349EX030 :date

The above example would be printed on a 2764 EPROM
an access was

49th week of 1983.

READ ONLY MEMORY STRUCTURE

A block diagram for
Information is stored in a
elements which are usually
MOS transistors.

ADDRESS
BUFFERS
SINGLE

INPUT RAIL
ADDRESS INPUT

DOUBLE
RAIL

OUTPUTA"H

CHIP I
SELECTOR

a ROM is shown in figure 8.
rectangular array of crosspoint
diodes, bipolar transistors, or

FIGURE 8

ROW
DECODERS

COLUMN

DECODERS

~

\
BO BN- 1

J

OUTPUTS

PPMII READ ONLY MEMORY PAGE 247

The binary address of the desired output word is applied
to the address-input buffer which provides an interface
between the logic levels of the external system and those of
the ROM. It also converts the input from single-rail to dual
rail logic. The address signals are transmitted to a
word-line decoder which is a series of AND gates connected to
select one of the word lines. The addresses are also applied
to a bit-line decoder which selects one of the groups of bit
lines. The column selectors send the bit line signals to the
detectors. There is one detector and one output amplifier for
each bit of the output word. The chip-select circuit disables
the ROM so that it can be used as part of a memory with a
capacity which exceeds that of the individual ROM chips.

Figure 9 shows the internal structure of a diode ROM.
ROM consists of rows called word lines and columns which are
called bit lines. A I'l l I (logic high) is placed on one, and
only one input (word) line at a time. A single input signal
produces a word on the output (bit) lines.

FIGURE 9

o I I '" i

2 I.... I I I

; I I - I-~ IJ '" '"
~
~ ~ 14
~

5

6 '"

7 I I I I

I.... I I...~

I.... I '" I... I

I
,

I I iI

J 2 o
Bit Iines--output

The horizontal and vertical 'wires' I are connected onlyI

through diodes. Only one input line is selected (made high)
at a time. Suppose input line 5 is high. Output lines 0 and 2
would be made high because of diode coupling. Output lines 1
and 3 will be low since there is no diode. Thus, the output

PPMII READ ONLY MEMORY PAGE 248

will be 0101. Likewise, when line 4 is high, the output is
0000; when line 6 is high, the output is 1111; when line 0 is
high, the output is 1010. The major disadvantage t~ diode
ROMs is that the output current is drawn directly from the
input lines, not from a power supply like bipolar and MOS
ROMs.

Transistor (bipolar and MOS) ROMs operate in much the
same way as diode ROMs. These types or ROMs offer faster
access times and lower current draw on the input lines.
Bipolar ROMs have access times (time interval between the
application of an address at the input and the appearance of
data at the output) as low as 15ns and are used in
applications where speed is a primary consideration. A
bipolar transistor, sometimes using a diode clamp, forms the
basic cell. Any cell can be addressed via the x-y decoder.
Logic 1 is obtained at the output when the base of the
transistor is high. For example, in figure 10, if Z2 was
high, a 1 would appear at W3 (the output). Figure 10 shows
the structure of a bipolar ROM.

FIGURE 10

Vee

~, ~ I I 1 WJ0

=

The basic organization of a MOS ROM is shown in figure
11.

FIGURE 11

Z2! ZI! Zoy

VOD , ~~w,

PPMII READ ONLY MEMORY PAGE 249

A MaS ROM works like a bipolar ROM except the outputs
are high, and are brought low when an input is high. In
figure 11, w3 is high until zl goes high. When zl is high, w3
goes low.

The physical structure of a MaS ROM is shown in figure
12.

FIGURE 12

From column !electon ,
A

04.

-+-~---DI I

i~l, ,

\, .J
T

......ization

The rows are p- or n- doped silicon which are connected
alternately to +5 or the row selector. The metalized columns
are connected to a column, or y-selector. A thin oxide is
deposited at each intersection forming a transistor. The rows
connected to +5 are transistor's source, while the alternate
rows connected to the row selector are the drains. MaS ROMs
are preferred to bipolar ROMs because larger densities can be
made at a lower cost. However, they are much slower, having
an access time of 400ns.

In 1971, Intel developed the EPROM. It was created to
provide non-volatile memory storage like a PROM, but could be
erased with exposure to ultraviolet light. The EPROM's new
transistor structure opened a new field to dedicated
microprocessor applications.

The EPROM transistor cell takes advantage of the
insulating properties of silicon dioxide to store a charge on
a gate isolated within silicon dioxide. Figure 13 is a cross

PPMII READ ONLY MEMORY PAGE 250

I

Vss

I
1
I e p-« 11- diffusions

E
e

section of a typical EPROM cell.

FIGURE 13

.~,

FIH~l L,~EL ;,CONO LE~lL

POLYSILICON POLYSI LICON
IFLOAliNGI \

FI ELO ..l... I I)."' It,Y
OXIOE

\

, ,UBSTRAH

When a charge is stored on the "floating" gate it
changes the characteristics of the transistor. When in the
read mode, a transistor with an uncharged floating gate will
conduct current from drain to source. In the charged state,
the transistor will not conduct current. The charged or
uncharged state of the gate gives the logical 1 or a output.

The chief benefit of floating gate, or FAMOS, transistor
structure is the ability for the charge to be removed or
restored at the user's discretion. The floating gate
structure consists of a po1ycrystalline silicon FET embedded
in silicon dioxide. Figure 14 is an example of a FAMOS
transistor.

FIGURE 14

GATE REGIONN- TYPE Si

PPtH I READ ONLY MEMORY PAGE 251

AISi~
SOURCE

FLOATING Si

~i\,"'"'" "-"""S! tr'L 11 t'>""'\'''''''''''''W
\[,,,, - (. P+ U:

~ .1 ,

-- ---_:1' \ /
DEPLETION

The passing of a very large current from the drain to
the source of the FET causes avalanche breakdown to occur in
the oxide and a negative charge to accumulate in the gate. If
too large a voltage is applied between the drain and source a
current will pass through the substrate destroying the cell.
When the current is removed, the breakdown of the oxide stops
and a negative charge is trapped on the gate. The negative
charge on the gate turns the transistor on. An EPROM can be
erased by exposing the circuit to high-intensity ultraviolet
light. When the cell is exposed to UV light, the breakdown
mechanism is set up on the oxide and the trapped charge is
released.

The erasure of most EPROMs begins upon exposure to UV
light with wavelengths shorter than 4000 Angstroms. Sunlight
and flourescent lamps generate light with wavelengths from
3000-4000 Angstroms. Constant exposure to roomlight could
erase data in approximately 3 years, while exposure to
sunlight could erase data in as little as 1 week. For this
reason, opaque covers should be placed over the quartz window
to prevent accidental erasure. The recommended erasure
procedure is exposure to ultraviolet light which has a
wavelength of 2537 Angstroms. The UV dose (intensity x
exposure time) should be at least l5W-sec/cm squared. The
erasure time with this dosage is approximately 15 to 20
minutes using a UV light with a 12000 micro W/cm squared. For
best results, the chip should be placed approximately one
inch from the lamp. It is possible to over-erase an EPROM,
which destroys the silicon dioxide insulator. Over-erasure
can begin to occur if the EPROM is erased in excess of 50
hours.

PPMII READ ONLY MEMORY PAGE 252

MODES OF OPERATION

All EPROMs types operate in a similar manner. There are
five modes of operation common to all EPROMs. Figure 15 is a
block diagram and a table of operating modes for the 2716
EPROM.

FIGURE 15

DotlTA OUTPUTS
0.-07

.....

.......,.

ADORESS

INPUTS

OUTPUT IlUfRAS

VO'lTlNO

tUM·BIT
aLL.MATRIX

.~
Mode

CE/PGM
(18)

OE
(20)

Vpp
(21)

Vee
(24)

Output.
(8-11,13-17)

Read Vil Vll +5 +5 Dour

Standby VIH Don't Care +5 +5 HighZ

Program PulsedVIL toVIH VIH +25 +5 DIN

Program Verify Vil Vil +25 +5 Dour

Program Inhibit
!

V1l VIH +25· +5 High Z

READ: EPROMs have two control lines which must both be
low in order to read data at the outputs. The Chip Enable
(CE) is the power control which is used to select the EPROM.
The Output Enable (OE) is the output control and is used to
gate data from the data outputs. If the inputs (addresses)
are stable, EPROM access time is equal to the delay from CE
to data output (Tce). If the addresses are stable and the CE
is low, data is available at the outputs after the falling
edge of the OE. Figure 16 is the timing diagram of a typical
EPROM.

PPMII READ ONLY MEMORY PAGE 253

FIGURE 16

I _ I'flOQIlAM .. I_ I'flOQMM I
"'''II'Y ..

DA'AIN
ITA.LI

ADD Nt'"

ADDllIII H+III

DATA IN
ITA.LI
AODH

IAI
(2)

ADDII... N

lSI '

DATA

ID•
(O.JOMAlQ

ffJPOIl '1

ADDII...

STANDBY: EPROMs have
current draw from 125 mA
standby mode when the CE
OE line doesn't matter w

a
to
line

hen

standby mode used to reduce
35 mAo The EPROM is placed in

is high. The condition of
the CE line is high.

the
the
the

high
OUTPUT DISABLE:

and the CE is
EPROM

low.
o

The
utput
chip

is disabled when the
is still selected,

OE
but

is
the

output of data is inhibited. In the standby mode, the outputs
are in a high impedance state.

PROGRAMMING: After the EPROM has been erased, all the
bits are set to 1 's ($FF hex). Data is programmed into the
chip by programming O's into the appropriate locations.
Individual bits can be only be turned off (1 to 0). Erasure

PPMII READ ONLY MEMORY PAGE 254

of the entire chip is necessary to return bits to the high
state (1). Data is programmed into the chip when the Vpp
(programming voltage) is at 21 volts and the CE is low (see
figure 15b). In most cases, exceeding 22 volts on the Vpp pin
will permanently damage an EPROM. It is also suggested that a
0.1 microfarad capacitor be connected from Vpp to ground when
programming to suppress spurious noise which may alter the
programmed data. Mitsubishi chips are especially difficult to
program without this capacitor.

After the data and address lines are stable, a 50
millisecond pulse is applied to the CE line. This procedure
must be performed at every address which is to be programmed.
Any address can be programmed in any order. The programming
pulse must not exceed 55 milliseconds or the chip will be
"over-programmed' '. It is also possible to program several
EPROM's simultaneously as long as proper TTL levels are
maintained.

PROGRAM INHIBIT: It is also possible to program multiple
EPROMs with different data by controlling the CE line.
Programming is inhibited when the CE line is high.
Programming can be continued when the CE line is pulsed low
and 21 volts is present at the Vpp pin.

PROGRAM VERIFY: A program verify should be performed after
each location is programmed. The verify mode is entered when
the CE and OE are low, and 21 volts is applied to Vpp. Data
will appear at the outputs which can be compared to the
desired data. If the data fails, the location can be placed
in the program mode again.

EEPROMS

The EEPROM evolved from EPROM technology. The EEPROM
cell takes advantage of the FAMOS circuitry of the EPROM with
the addition of a tunnel oxide region above the drain of the
floating gate transistor. This additional layer of oxide
allows an electrical charge to move bidirectionally either
onto or off of the floating gate. Figure 17 shows an EEPROM
cell in comparison with an EPROM cell.

FIGURE 17

• Vo IIECOND-LE'Il:L

POLY SILICON
SIECOND-LevEL

POLYSILICON

n--++, / GATIE OXIDETUNNEL "LD
~.:.JVOXIDE OXIDE ";"

P-IU8STIIAT1!

P-suesTIIATE

IPf'OIII CELL
IIpMlM Cl!LL

PPMII READ ONLY MEMORY PAGE 255

When 21 volts is applied to the transistorls gate and a
ground to the drain, a positive charge is passed through the
tunnel oxide onto the floating gate. Reversing the voltages
removes the charge from the gate.

EEPROMs offer many benefits over the conventional ROM or
EPROM. The tunnel oxide mechanism has very low power
requirements, so programming can be accomplished with a small
power supply. The low current requirements make it possible
to program an EEPROM with the existing supply of most
computer systems. The read, write, and erasure modes can be
accomplished in-circuit with only minor modifications to an
existing EPROM system.

One of the major advantages of the EEPROMs is the
ability to erase and reprogram a single byte. Unlike EPROMs,
the entire chip does not have to be erased to alter the data.
Some EEPROMs allow byte erasure and reprogramming in as
little as 10 milliseconds. Also, certain types have entire
chip erase mode which will erase the chip in 10 milliseconds
in-circuit, versus the out-of-circuit 15-20 minute erasure
required for EPROMs.

The first commercially available EEPROM was the Intel
2816. The 2816 was introduced in 1981. It represented the
first step in EEPROM reliability, and demonstrated the
viability of the floating gate technology. The 2816
incorporated the basic requirements for an EEPROM: 10
millisecond write/erase cycle; single byte erasability;

external for writing data the chip. These

10,000 erase/write cycles per
access time.

byte; and a 250 nanosecond

The first generation EEPROMs required a number of
components to

circuits included address and data latches, a write timer to
tell the other circuits when the EEPROM was writing,
write-protect circuits to prevent accidental writing on
power-up and power-down, and shaping circuitry to round off
the leading edge of the write pulse. The shaping circuitry
prevented sharp spikes from damaging the tunnel oxide layer.
The absence of this circuitry seriously impaired the
reliability of the EEPROM.

The 2817, a second generation EEPROM, incorporated much
of the required external circuitry. Intel IS goal was to make
the chip operate as closely as possible to RAM. The newer
2817 contained address and data latches, write timer, write
pulse, and power-up and power-down circuitry. In addition to
eliminating the external circuitry, the internal latches
allowed the processor to continue it's duties without having
to wait for the completion of the 10 millisecond write/erase
cycle. The latches allow the processor to spend the same
amount of time writing to EEPROM as it would spend writing to
RAM. The computer sends data to the EEPROM and the chip
latches the data until the write cycle is completed. The 2817
incorporated a READY/BUSY line which prevented the processor
from sending additional data until the chip was ready. Figure
18 shows the internal circuitry of the 2817.

PPMII READ ONLY MEMORY PAGE 256

FIGURE	 18

-------------------,

;, r-----l r---------, :

...
"~r;.

'000'" I, .~I	 L"'':"C~ES
II

I'~II
I I I o.u'IV	 ~ I I

I
I
I
I
I
I
I
I
I

'EJ I
DATA	 . I I

II	 Il- '8,:1 II
L	 ~~

Writing to the 2817 was as easy as writing to RAM
because the 2817 incorporated an automatic
erase-before-write. The address and data lines were latched
with the WE line and the on-chip timer generated a
programming pulse using an external 560 picofarad timing
capacitor. The READY/BUSY line went low when a write was in
progress, and returned high to enable another write or read.
The only external circuitry required by the 2817 was a static
21 volt supply and a write-protect circuit. The write protect
circuitry is required to prevent 21 volts (Vpp) from reaching
the chip before 5 volts (Vcc). The time for the complete
erase/write operation was rated at 20 milliseconds. The
actual time was less than this due to a control loop which
measured the charge on the floating gate. Once it detected
the charge was sufficient to retain the data, it would
discontinue the write process and return the READY/BUSY line
high. Reading the 2817 was accomplished in the same manner as
reading a 2716 EPROM. Figure 19 shows the system interface
requirements and operation modes for the 2817 EEPROM.

FIGURE 19
-_11+.. - Vee"""'-- "'IY De

I

v.........-- ... "" DC
-~=1J.
~

_ft	 I WI

I

1V___	 I IIDYIIUIV

I
- -",

-
~:±j

I

n:

a._A,.	 lAn_AM

I
....------ I --.-,..........

__NlW ,_ .11 .1

I
~-t..o,

PPMII	 READ ONLY MEMORY PAGE 257

The latest version of the 2817 is the 2817A. This
version can be programmed with a 5 volt-only supply. This
eliminates the possibility of destroying the chip when 21
volts is applied without 5 volts being present, and makes it
easier to incorporate the 2817A into existing systems. The
2817 and 2817A are the easiest EEPROMs to incorporate into an
existing computer system. ,However, they are among the most
difficult to program with an EPROM or EEPROM programmer
because of the READY/BUSY 1ine. The programmer must have some
method of reading this line to determine the mode of
operation of the 2817. In an existing system, this task is
easily accomplished by connecting the line to the processor's
interrupt line. An EEPROM programmer would require
modification to be able to sense the READY/BUSY line. For
this reason, few if any external programmers can handle the
2817 or 2817A.

PPMII READ ONLY MEMORY PAGE 258

EEPROM INTERNAL STRUCTURE

The design requirements for a non-volatile electrically
erasable memory presented formidable problems for integrated
circuit engineers. The device had to have long-term data
retention. fast access time, and high density. It had to be
designed for incorporation into existing systems and also be
able to be included into the latest 16 & 32-bit technology.
These requirements prompted the development of a new
non-volatile technology, HMOS-E, and a new type of cell
structure, floating-gate tunnel oxide, or FLOTOX.

It was originally believed that the EEPROM cell would be
impossible to produce. After extensive research, engineers
believed they could pass electrons through an oxide using
Fowler-Nordheim tunnelling. When 10,000,000 volts/cm is
applied across an insulator, electrons jump from the negative
electrode to the positive electrode. In other words, the
electrons would jump from gate to substrate. Figure 20
illustrates this process.

FIGURE 20

V+

Polysilicon Gate

Tunnel Oxide

N-Type Silicon Substrate

.J.-
-

The Fowler-Nordheim tunneling presented two major

problems. First, MOSFETs were normally operated at only
1,000,000 volts/cm, one-tenth the voltage required for
tunneling. Second, to induce tunneling with voltages of about
21 volts, the oxide had to be less than 200 Angstroms thick.
At that time, oxide thicknesses of less than 500 Angstoms had
never been produced. It was believed that oxide
inconsistencies would be too high at thicknesses below 500
Angstroms.

However, tunneling offered too many advantages to be
ignored. Tunneling is a low-energy process requiring
extremely low currents. It also offerred the capability to
charge as well as discharge the FET gate. The tunnel could
also be made very small, making it ideal for producing
high-density circuits. These factors initiated research into
producing oxides of less than 200 Angstroms. Eventually this
led to the development of a cell structure called FLOTOX (see

PPMII READ ONLY MEMORY PAGE 259

figure 17)
The FLOTOX cell was very similar to the FAMOS cell with

the exception of an additional tunnel-oxide layer over the
FET drain. When Vpp (21 volts) is ap~lied to the gate, and
the drain is grounded (0 volts), the floating gate is
capacitive1y coupled to a positive voltage. Electrons are
drawn through the tunnel to charge the floating gate.
Applying 21 volts to the drain and 0 volts to the gate,
discharges the gate into the tunnel. The physical structure
of an EEPROM FLOTOX cell is shown in figure 21.

FIGURE 21

SII!IGLE
CELL,

SIUCT
LIIlE

"21V

EAASIJ
WRITE
UN.

+21Y

COlU.'" t COLUMN ;lSlNGl.f.

CILL,
 '0\')'''V

SnEeT ILIN!
j I

"21\i' ,, ~ ~ ~
i ,

El:~"pO:S) EL:~:rHNS ~ DV
ERABEf ~.~ _-21Y t '.-'
~~. !, I,~
 · : 1 1
,1

-= -=-

Schemetlc of Memory Cell OperetlonSchematic of Memory Cell Operatio"
During Write

During Eras.

Each FLOTOX circuit consists of two MOSFETs as shown in
figure 21. The cell consists of a storage transistor (the
actual FLOTOX device), and a select transistor. When the
storage transistor is discharged, the select transistor
prevents current from leaking into nonse1ected memory cells.
The select transistor also prevents the storage transistor
from discharging when an adjacent column is high. In figure
21, the select line and program lines correspond to the gate,
and the column is the drain of the MOSFET. To erase the chip
(store a positive charge on the gate), 21 volts is applied to
the gate, while the drain is at 0 volts. This process can be
used to erase single cells or the entire matrix.

FLOTOX technology has been susceptible to two types of
failure: Tunnel oxide breakdown and oxide breakdown of the
row select circuit. Approximately 88 percent of device
failure is due to tunnel oxide breakdown, while only 10
percent of device failures was caused by defective row select
circuitry. Either of these conditions can trap charges during

PPMII READ ONLY MEMORY PAGE 260

the erase/write cycle. If this occurs, the oxide retains
enough residual charge to make it difficult to discharge a
particular cell.

The reliability of EEPROMs is quite excellent. They are
designed to withstand up to 10,000 write cycles, and to store
data for over 20 years. 10,000 write cycles is equivalent to
altering the data 3 times a day for 10 years. Intel has found
that approximately 99 percent of the bytes in their EEPROMs
are still functionally reliable after as many as 100,000
write cycles.

NEW EEPROMS AND PROGRAMMING

Within the last two years, Intel, Seeq, Xicor, and Exe1
have developed 5 volt programmable EEPROMs. The Intel 2816A
and the Seeq 5213 require external latches and timing
circuitry. The Exe1 XL2816A, Xicor X2816A, and Intel 2817A
incorporate the necessary timing and latch circuitry. These
chips also feature an automatic erase-before-write allowing
them to be accessed as RAM for read and write operations.

The most popular 16k EEPROMs are the Exe1 and Xicor 2816
and the Intel 2817A. These devices are popular because of the
limited external support circuitry required for programming.
Three popular devices for direct 2716 replacement are the
Intel 2816A, the Seeq 5213 or 52B13, and the Xicor 2816. The
chips are pin compatible with the 2716, and once programmed
can be read just like a 2716. The mode selection and timing
diagram for Inte1's 2816A is shown in Figure 22.

, .

PPMII READ ONLY MEMORY PAGE 261

FIGURE 22

~'--- PIN i cEr6EI WE I IN"PUTStl
:UODE--.------ I (18]-(20) (21) OUTPUTsl

_.I Reed -- I....--].v.:--- V;~ 'VIH ~---D~~;
' Slend~Y---- V;~ -~~'~- D~~';- H~ghl-I
: Care Care
!------ -- -- -- .--. --- --- -- I

[Byte E~"s!_ ~_'L V'!'i_ V,L DIN~VIH"j

iByleWrile L_VI!, __ ~.VIH- __~I_l,.. __CJ'-~ ;
I 19 [

Chip Erase I V'L l 10 i VIL ! DIN~V'H i
115V I

_..... _. JINl> Ore-ra"on --OJ - VIl : Vi" i V,H High Z i

I- I.CC

.OORESSES .OORESS ,; ~ AOORESS 2 X
ffi

O.a BUS

en

'DECODE
I --" -l- ICE

i

-I 'OECOOE . -- --- -.1 'TURNOFF

~ i V I
OUTPUTS 1

DESEl ECliNG

) OU'PUTS' 'V
.CTlVE)1\. OAa 1 V.lI0 A:: ,)1\..

_.--. I'.cc -. --I

010 TA BUS DATA 1 VALID010'" , V.LIO

BU~ xxxxx-iou' PillCO"TENTION I. OVERl'.

The Xicor 2816 is very similar to the Intel 2816A. but
the Xicor version requires fewer external support devices.
The Xicor 2816 has on-chip latches. a timing-pulse generator.
a high-voltage pulse generator. and write-protect circuitry.
The write cycle takes 10 milliseconds to complete. but once
triggered. the cycle is automatic. This enables the processor
to perform other duties between write cycles.

To write a particular location. that byte must be erased
prior to the write. Erasing is accomplished by selecting the
address. latching all data pins high. and pulsing the CE and
WE. The OE must be held high during a write/erase cycle. The
pulse to the WE pin must be at least 9 milliseconds and
should not exceed 70 milliseconds. Once the location is
erased. a write is accomplished in the same manner. except
the state of the data lines is different.

A number of the manufacturers have announced densitie~
of 64k. All the new chips are supposed to conform to th~
JEDEC (Joint Electron Device Engineering Council) standards
for 28 pin packages. Figure 23 lists many of the new EEPROMs
and their pinouts.

PPMII READ ONLY MEMORY PAGE 262

FIGURE 23

"12 AI 2 Au NC

1'7 A7 A7 A7 A1

.... Ae Ae Ae Ae
At Ae As ~ ~

A. A. A. A. A.

1.3 A3 A3 A3 A3

A2 A2 Aa Aa Aa

A, A, A, A, A,

Ao Ao 1'0 Ao Ao
l 1100 1100 1100 1100 1100

1101 liD, lID, lID, lID,

1102 I/0a I/0a 1/02 110,
.

'11 .,
Vas Vss Vas Vss Vss

'EXQ...
Vee

WE WE WE WE

,t', '."
~

2. Vee NC NC NC NC

t " 23 At At " " "
3 22 A9 A9 A9 A9 A9

,if

4 21. WE NC All All A"
5 ~ DE DE DE DE DE

6 18 A,o A,o 1'10 A,o Alo

7 18 CE CE CE CE CE

8 17 1/07 1/07 1/07 1/07 1/07

9 18 I/O, lID, lID, lID, lID,

III 15 1105 1105 1105 1105 1105

14 IfO. 110. 110. 110. 110.

12 13 , 1/03 1/03 IIDJ 1/03 IIDJ

PIN NUMBERS FOR 24-PIN DIP --.J L PIN NUMBERS FOR 2B·PIN DIP

Many of the new 64k EEPROMs incorporate features not
offered on the 16k chips. For example, Xicor has developed
Data Polling which enables the processor to determine if the
write cycle is complete without sacrificing a pin like the
28llA. The Data Polling pin will double as A14 enabling the
28 pin package to be used up to a density of 256k. One of the
most popular new features is a page-mode used to store more
than one byte of data during a single write cycle. Page-mode
techniques could improve the speed of loading data by a
factor of 64. The problem with this technique is that it
drastically reduces the expected life of the chip.

To overcome the limitations of the page-mode, Exel
developed a pin called the Status Word (SW). It allows for
features like page-mode to be controlled by user software.
The Status Word uses a set of registers that may be read or
written to when the SW pin is low. The SW pin allows other
special functions like a fast-write mode to be incorporated
into the chip without the need for additional pins.

Since EEPROMs maintain data on power-up and power-down,
they are susceptible to false write cycles. These can occur
during power transients when the WE control is low, and the
chip is still receiving enough power to initiate a write
operation. Early EEPROMs did not have write-protect
circuitry. Manufacturers have attempted to solve this problem
with gated control lines, voltage sensors, or on-chip timers.
Figure 24 compares features of the more popular EEPROMs.
Pinouts of many of the popular EEPROMs are included at the
end of this chapter.

PPMII READ ONLY MEMORY PAGE 263

FIGURE 24

Intel 2818 I 16-K I no I no no no not needed A7

Intel 2817 I 16-K I no I vel yes no not needed Vpp

Int.l 2817A 16'K ves yes yes no good RDY/BSY
-

Excel 2816A 16-1(ves yes yti no fair I A7
-------- ---~---

Xlcor 2816A 16-K ves ves yes no marginal I A7

Seeq 62813 16-K Ves ves no no marginal I A7

beel 48C64 64-K yes ves ~ 32-bVte foolproof status-word control

Xicor 2864A I 64-K ves ves :t 16b",

good no connection

Int.1 64K I 64-K I vel ves ves 16-bVte 900d RDY/BSY
--.-- - - ----- --

Inmol 3630 I 64-K I ves I ves I no 64 byte marginal program/Brllll! control

PPf~ I I READ ONLY MEMORY PAGE 264

EPROM and EEPROM PROGRAMMING

Previous sections of this chapter have covered the basic
requirements for programming EPROMs and EEPROMs. Attempting
to program these chips without a commercial "burner" ;s
virtually impossible and potentially very costly in terms of
damaged chips.

The Timing diagram of a typical EPROM is shown in Figure
25.

FIGURE 25

VI'" \.. 1.,.---------
_IINO

I'v" ~------'

VI" 1 ..

Ci

r. Vil

I
VIH ----+--~..

GiN..

VI' v"

I
V,"

HIOHZ
OUTPUT HlGHZ

VOl

_I.
VALID

....

Ic& -I

••••

• -I'ACe

«««

To properly program an EPROM without damaging the
matrix, the sWitching of the mode-select lines and the
voltages must be precisely controlled. If a programming pulse
is too long, or the voltages are too high, the chip will be
permanently damaged. It is for these reasons that programming
of EPROMs or EEPROMs should only be attempted with a
commercial programmer.

A number of EPROM programmers have been tested with the
VIC-20, C-64 and PET computers. The results were far from
satisfactory. Some programmers supplied improper voltages,
destroying the chips, while others altered the data they were
attempting to "burn" onto the chip. However, there is one
programmer which is without question the most versatile
device for working with EPROMs or EEPROMs on the C-64 or
VIC-20. The programmer is manufactured by a California-based
company called JASON-RANHEIM (JR). The programmer retails for
$99.00, but contains features not found on most programmers
costing 20 times as much. JR also offers cartridge boards
which hold up to 16k, and two boards, the PCC-4 and PCC-8,
that can bank switch up to 128k and 256k respectively! These
boards come with download/run software that enables the board

PPMII EPROM and EEPROM PROGRAMMING PAGE 265

4

to download up to to 38k at a time into the computer. It is
even designed to download and execute a program on power-up,
enabling the computer to continuously run the same software
without the need to re-10ad the software if the power fails!
These boards make it possible to store your favorite word
processor, database, or spreadsheet on a single board and
load the one you wish to use into the computer in
approximately 3 seconds! JR products are available through
CSM Software Inc.

The PROMENADE C1 can program single bytes or entire
chips. It also has the capability to store files on EPROMs
and recall them from program control. The PROMENADE has
programming voltages, 2 EPROM supply voltages, 3 intelligent
programming algorithms, 15 bit chip addressing, and 3 LED's
that tell the user precisely what the programmer is doing.
The PROMENADE has the capability to program the following
chips:

2758 462732P 68766
2516 2564 5133 :EEPROM
2716 2764 5143 I ,

I I27C16 27C64 2815
2532 27128 2816

'
'

,
I

2732 27256 2816A
27C32 27512* X2816 ' ,

I I2732A 68764	 48016
52813 ' ,

* requires external switching

The best feature of this EPROM programmer is that it is
very easy to use. Just plug the programmer into the USER PORT
and load the PROMOS softwar~. The PROMOS software works in
conjunction with most ML monitors that are not located at
$9000 (address $9000). The PROMOS software is also available
on a cartridge with HESMON and the DOS wedge built in. The
rest of this chapter will be devoted to the use of the JR
programmer.

One important point to remember when using the JR
programmer is that the PROMOS software normally resides at
$9000 (36864 decimal), so the program you wish to put on
EPROM should be located in another area of memory when it is
being' 'burned" (more on this later).

There are six control commands which are Ilwedged'l into
the computer's operating system by the PROMOS software. These
are PI (shift up-arrow), English Pound, Z, shifted-E,
shift-S, and shift-L. The first three are the ones that you
will use almost exclusively.

(PI): This key (shift up-arrow) is used to place the
PROMENADE into programming mode. The programming parameters
should be typed as follows:

(PI)[mem start],[mem end],[EPROM start],[CW],[PMW]

PPMII	 EPROM and EEPROM PROGRAMMING PAGE 266

0

The PROMENADE needs the starting and ending locations of
the program to be "burned", the 1ocat i on where it is to
start in the EPROM, and the control and programming words
(more on these later). For example, (PI)8192,16383,0,5,7
would program a 2764 EPROM with the data from 8192 ·to 16383
($2000 to $3FFF hex). It would start at the first byte in the
EPROM, and program the chip using intelligent method #1. When
sending commands to the PROMENADE you must make sure you
don't tell it to program more bytes than there are on the
chip. For example, a 64k (8Kx8) EPROM contains 8192 bytes of
available space. In our example, 16383-8192=8191 not 81921
You must subtract one from the total number of bytes you wish
to program because the programmer is starting at location
not location 1 in the EPROM. If you tell the programmer to
program too many bytes, it won't be detected until the end of

It is used read data from the EPROM into the computer. The

the' 'burn" cycle.
you will have to er

The yellow error light will flash,
ase and reprogram the data.

and

English Pound (EP)= This key is the opposite of the PI key.
to

only difference is that you don't need the Program Method
Word (PMW). For example (EP)8192,16383,0,5 would transfer the
entire contents of a 64k EPROM into the computer starting at
8192.

l: The 'l' command is used to 'zero' the PROMENADE socket. On
power-up, all the lights on the PROMENADE will be lit. This
means that the socket is 'live' and must be turned off before
inserting a chip. If the socket is not turned off, the chip
could be damaged.

shift-E: This command is designed to erase the 48016 EEPROM
in 2/10's of a second. Other types of EEPROMs must be erased
by programming a 1 's ($FF hex) into the locations that are to
be reprogrammed.

shift-s: Takes data from a section of memory and produces a
program file which is then' 'burned" to a chip.

shift-1: This command retrieves a file from a chip and loads
it into memory. This command is only designed to read files
into memory. It is rarely used and will not be covered in the
rest of this chapter.

The PROMENADE has 3 lights that tell the user precisely
what the programmer is doing. The GREEN light means the
PROMENADE is receiving power from the computer. The Red light
means that the socket is "active", or that certain lines on
the socket are now at conditions other than 0 (logic low).
Finally, the yellow light indicates that the PROMENADE is
programming the chip in the socket. If there ;s an error
while programming, the yellow light will flash and
programming will stop.

To illustrate the programming of an EPROM, the following
example assumes you wish to create or duplicate an auto-start
8k cartridge ($8000-$9FFF hex, or 32768-40959). The only

PPMII EPROM and EEPROM PROGRAMMING PAGE 267

problem with the PROMENADE is that it requires the memory
locations to be in decima1 t and ML monitors require all
operations to be in hex. This sometimes get confusing t and
makes it very difficult to work with a ML monitor and the
PROMENADE without hex-decimal calculator. You must also
remember to relocate code which exists from $8000-$9FFF
because this is where the PROMOS software normally resides
(actua11Yt it relocates itself just before the end of the
BASIC area). The best type of ML monitor to use is a monitor
that resides at $COOO t like HIMON. The Hesmon/PROMOS package
can be difficult to use when trying to work with routines
that reside at $8000 because that is where it resides. The
following steps will outline the method for programming a
2764 EPROM with 8k of code which resides at $8000.

1. Use the monitor to relocate the 8k of code from $8000 to
$2000 (8192 decimal). This is usually the best place to
relocate code because it gives you plenty of room for large
programs. For example:

T 8000 9FFF 2000

This will transfer the program from the place where it
normally operates ($8000)t to an area that will allow you to
"burn" it on a chip ($2000). This does not alter the code
in any way. When the chip is inserted into the computer it
will operate norma11Yt assuming you programmed it correctly.
The next step is to save the code that was transferred to
$2000.

SI'program name ll t08 t 2000 t 4000

You must save the copy at $2000 t not at $8000 t so when it is
loaded back into the computer to be I 'burned" it will load
at $2000 and not at $8000. Once the code is saved t turn the
computer off to clear the memory.

2. The next step is to load and run the PROMOS software. You
should get a message saying that PROMOS is active. Once that
is done t load the copy of the program that was saved at
$2000.

LOAD I Iprogram name" t 8 t 1

It must be loaded with a '8 t 1'. If it is not t it will load at
$0800 and you will I'burn ' I whatever garbage is residing at
$2000.

3. Next t 'zero l the PROMENADE socket with the III command.
Insert the 2764 chip into the socket and lock it in. BE SURE
TO CORRECTLY ORIENT THE CHIP IN THE SOCKET. THE CHIP CAN BE
DAMAGED IF IT IS INSERTED BACKWARDS.

4. Now the chip can be programmed using the (PI) command.

PPMII EPROM and EEPROM PROGRAMMING PAGE 268

(PI)8192,16383,O,5,3

This
SURE

programs
YOU HAVE

the chip with the data from $2000-$3FFF.
ENTERED ALL THE PARAMETERS CORRECTLY. IF

MAKE
THEY

ARE WRONG, ESPECIALLY THE CW, THE CHIP COULD BE DAMA~ED. With
these parameters, it will take approximately 7 minutes to
program a 2764. This time can be reduced with the use of
other PMW's.

5. When the PROMENADE is finished programming the lights will
shut off. If there was an error, the yellow light will flash.
An error could result from wrong parameters or the inability
to program the correct data. This usually results from
incomplete erasure of the chips. If there were no errors, the
chip can be inserted into a board and tested in the computer.
If you followed the directions above, the program should run.
More information on loading and running programs and files is
outlined in the PROMENADE's manual.

The Control Word (CW) and the Program Method Word (PMW)
are two very important features of the PROMENADE. The CW is
used to tell tell the PROMENADE the type of EPROM that is in
the socket. The CW tells the programmer the programming
voltage (Vpp), the pin to receive Vpp, the pin to receive the
programming pulse, and the standby logic level in the read
mode. The following table will explain the parameters:

PPMII EPROM and EEPROM PROGRAMMING PAGE 269

-- ---

-- ---

CONTROL WORD

BITS FUNCTION

0 voltage control

0 0 25 volts
1 0 21 volts
0 1 12.5 volts
1 1 5 volts

2 3 pin select for Vpp

0 0 pin 22
1 0 pin 1
0 1 pin 23
1 1 pin 1 set low. select mode for 52B33

4 5 pin select for Programming Pulse

0 0 pulse pin 27
1 0 pulse pin 22
0 1 pulse pin 20
1 1 no action

6 7 standby logic level of pin 20 on a read

0 0 set low: no action on read
1 0 set low: taken high on read
0 1 set high: no action on read
1 1 set high: taken low on read

PROGRAM METHOD WORD

The PMW tells the PROMENADE how to program the EPROM you
chose with the CWo Basically, the PMW controls the pulse
duration of the programming pulse. There are four groups of
PMW·s available: 0-3, 4-7, 8-11 and 12-15. These groups
correspond to the standard method, Intelligent method 1,
Intelligent method 2, and Intelligent method 3. The standard
method takes the most amount of time because it assumes the
worst case for every byte. Most bytes will not require nearly
as long as the • 'worst-case·· byte. The Intelligent PMW·s
reduce overall programming time by testing the EPROM as it is
programming. The following table lists the pulse times for
the standard PMW:

PMW Pulse Duration in milliseconds

o 6

1 12

2 24

3 48

PPMII EPROM and EEPROM PROGRAMMING PAGE 270

The next table lists the test pulse time in
milliseconds, and the maximum permitted programming time
before failure in milliseconds.

PMW METHOD TEST PULSE MAX PROG TIME

4
 var 12ms
5

1
1
 var 25ms

6 1 var 50ms
7
 1
 var lOOms
8 2 .25ms 75ms
9 2 .5ms 75ms
10 2 1•Oms 75ms
11 2 2.0ms 75ms
12 3 .25ms lOOms
13 3 .5ms lOOms
14 3 1 •Oms lOOms
15 3 2.0ms lOOms

Bits 0-3 of the PMW control the duration of the
programming pulse.
write-protect files,

PMW of
or make

16 or greater are
files non-relocatable.

used
PMW's

to
of

greater than 16 are used in conjunction with the shift-S
command. Bit 4 of the PMW is used to produce non-relocatable
files. Any file can be made non-relocatable by adding 16 to
the PMW you choose (this sets bit 4 high). Bit 5
write-protects files and can be implemented by adding 32 to
the PMW (this sets bit 5 high). If you want to write-protect
and make a file non-relocatable, add 48 to the PMW (sets bits
4 and 5 high).

There are only two features of the PROMENADE which could
be improved. First, the PROMOS software requires the memory
parameters to be entered in decimal. This becomes very
confusing when using the PROMOS software in conjunction with
an ML monitor (although Hesmon does have decimal-hex
conversion). Second, there is no way of knowing what type of
error has occurred when the yellow error light flashes. These
two minor drawbacks don't take away from the versatility of
the PROMENADE. It is the best EPROM programmer available for
any micro computer system.

The only other device you will need to program EPROMs is
an EPROM eraser. The best, low-cost eraser is the DATARASE
manufactured by Walling. This eraser holds two chips and will
erase them in about 10 minutes. It retails for $34.95 and is
available from CSM Software Inc.

The final section of this chapter is a reference section
listing of many EPROM and EEPROM pinouts.

PPMII EPROM and EEPROM PROGRAMMING PAGE 271

-- --

EPROM AND EEPROM PINOUTS

2714 27128

2716 2732A

Vee Vpp

JGiii "'2....,.......
,., 1 Vcc ,., 1 Vee A7 N.C. ",
IAt IAt At At ...At ...
a... At ... a At A"At A" ... Vpp ...

•
4 "J A11

Oi liIJvpp "" ""[.4

Oi ":l ... • "" A, • "" ":l ",. ..•"'. ...
7A, Ci A, Ci

•
7 Ci ",A,

0, AD 0, 0, ADAD AD•
Co a. Co a. Co a. 00• •
0, 00 0, 00 0, 00 0,
0, " O. 0, " 11 11 a. 0, C4 0,

11 0.. 11 0.. 0.. Q"D - - -
A7 1 24 Vee

AS 2

24 Vee A7 1
23 A8

A5 3

23 AS A6 2
22 A9 A5 3 22 A9

A4 4
 21 VPP A4 4 21 VPP

A3 5 20 ~ A3 5 20 PD!P'GM

A2 6 19 Al0 A2 6 19 Al0

Al 7 18 PO/PGM A1 7 18 A11

AO 8 17 08 AO 8 17 08

01 9 16 07 01 9 16 07

02 10
 15 06 02 10 15 06

03 11
 14 05 03 11 14 05

Vss 12 13 0413 04 Vss 12

, - A, - :I...1VceAl , .."0' , " "0"0
0" " 0..v.... r. , ",. JCll!atAl(50•

A", ., (. ... ,t]"10A;r r t
1C

' II..... III Jet'JeI AI rA, t. r

• 17 -11"0,j 11JOr "01"0' , r , Ie J'A.. 1
•
I.

"
"]~
I~)IA !ItO, L 10 I!lJIA1,lOll

1.]~ 1,,0,1 .. 1·l1'~~" """.1
"
 1) J 1"'0,
..., " I,) J1.,0, OtlOr

"

'"
•
II

'....
.....

Vee ",'... ...
A.AtAt A" [At " V,. A• •

"" Oi " A,At "'. A,CiA,
A,0,AD

00,a.Co
110,0, CIa

0, liD}'00

"D GNDOa

PPMII EPROM and EEPROM PROGRAMMING

...~ -t:"

27258

Vw VeeVee
A., A";;Qii
A, A.)

A,"" A.At
A, A,...

A..A.A"
A, oriii
A, A,.A, •

fler A,

O.0, A.

0,a. o.
00 0, 0,
CIo 0, o.
0, 0,O"D

TMS25e4n. OR JOL PACKAGE

SMJ25e4 ... J PACKAGE

ITOPVIEWI

Vpp 1 28 Vee t
51 2 27 52

A7 3 26 vee t
A6 4 25 A8

A5 5 2~ A9

A4 6 23 A12

A3 7 22 PDIPGM

A2 8 21 Al0

Al 9 20 All

AO 10 19 08

01 11 18 07

02 12 17 A6

03 13 16 05

Vss t.e 15 04

-AI, 1 " Occ .. 2 23 1"
A,l
A. ,

A, ,

A, ,

,
-,
•

"
21

'"

19

: A.-j"
]01

J ""0

A" 1';'''' 111 ICE

.. i ,
" jl,IO,

lotOo\ • " ,1"'0
1,10,. 10 " j ItIO.

',xl,
ON.

"11, "
'J

II-'O~

1 1)10]

A.

"0
,"'F IVI>Jl

~ .~i5E
~'~
N \ eE
an , 110

7

IIO~

110 ~

"b liC,

1 [I '.

PAGE 272

DEFINITIONS

The 1541 disk drive will format the new disk to be ·read and
write compatible with many other Commodore (R) disk drives. The
proper syntax to format a disk is:

10 OPEN 15,8,15,1110: 11 'RETURN'
20 PRINT#15,"NO:NAME OF DISK,ID II 'RETURN'
30 CLOSE 15 'RETURN'

Whenever you open a channel to the disk drive be sure to
initialize the drive (1110: 11). This will reset the disk drive to
the same condition as if you just turned the power on. To
achieve a properly formatted disk a loud clicking sound should
be heard from the drive during the first few seconds of the
formatting procedure.

In order to properly communicate we first need to understand
the meaning of a few technical terms. Following is a list of
terms that will be used in discussing the disk drive.

DEFINITIONS:

ARCHIVAL COpy - A copy of a program to be used only in the
event the original program should fail. In the USA, the legal
owner of a copyrighted program is the only person that may
possess an archival copy. Any unauthorized copying or
duplication of a copyrighted program is illegal.

AUTO-BOOT - A ML program that will, upon loading into the
computer, load another program and execute that program. The
term auto-boot and auto-load are synonymous

BOOT - Refers to]etting a computer or computer program
started. Often times the early computers needed a little help
to get them going. As with all equipment, a little nudge (i .e.
from your boot) may be required to get it going.

BAM - Block Allocation Map - how many blocks of information
have been used and how many are available for use.

BACKING UP - The process of making a copy of a program. - Many
time this refers to making a copy of something that never
should have been save~ in the first place.

BINA~Y - The native number system of the computer. The binary
number system contains only the numbers 0 and 1.

BLOCK - The area on a disk where information is stored. There
are 683 Blocks, each capable of holding 256 bytes of
information. The term block refers to a specific Track and
Sector on the disk. A block is where the program data is stored

PPMII DEFINITIONS PAGE 273

BYTE - A numeric method of storing information in the
computer's memory or on the disk. One byte is required to
store each letter or number in the computer's memory. All
letters, numbers, graphics, symbols and punctuation marks are
stored in the computers' memory as a number. The numerical
equivalents are contained in a chart provided in the section on
memory maps. A byte must be two digits (i .e. $04, FF, 00, 82).

COMPILER - A program used to convert BASIC (or other languages)
into ML or a modified ML called P-CODE. P-Code or ML code will
often times execute many times
that was used to generate it.

faster than the original code

COPYRIGHT - A legal method of protecting computer software from
being copied. No one should ever make an unauthorized copy of
copyrighted software.

CRASH - Refers to the erratic functioning of a program or to
the program ceasing entirely. The program may crash due to the
fault of the programmer (a bug) or to the program failing to
pass its protection scheme (as in a copy disk).

CURSOR - What a pirate does when the bootleg copy he obtained
does not work. Just checking to see if anybody actually reads
definitions.

DIRECTORY - A listing of each file (program, . sequential, user
relative) contained on the disk. The directory also contains
the location of the track and sector on which the program
starts and how long the programs are

DOS - Disk Operating System. This controls the internal
workings of the disk drive. This will include the
microprocessor and associated memory contained in the disk
drive. The term DOS has also been applied to the ML routine
that a programmer may use in the disk drive to accomplish a
specific task.

EEPROM - ELECTRICALLY Eraseable Programmable Read Only Memory.
This is a computer chip that may be programmed by the user (see
the EPROM section later in this manual). This chip will retain
its memory even when the power is turned off. The chip may be
erased electrically by an EPROM programmer. After eraser the
chip may be re-programmed

ENCRYPTION - A method of coding the data on the disk. Encrypted
programs will appear to be 'garbage' when the program is on the
disk.

PPMII DEFINITIONS PAGE 274

EPROM - Eraseab1e Programmable Read Only Memory. This is a
computer chip that may be programmed by the user (see the EPROM
section later in this manual). This chip will retain its memory

track. The guard band is erased by the read/write head whenever

even when the power is turned off.
exposing it to ultra-violet light.
be re-programmed.

The chip may
After erasure

be
the

erased
chip

by
may

GUARD BAND - The area directly adjacent to both sides of the

the disk drive writes data to the disk. This is done to prevent
interference between adjacent tracks. The guard band will also
erase data that has been placed on the half track.

GCR - Group Cyclic Recording. A big fancy name for the way that
the 1541 stores data on the disk. In a nutshel1 9 the 1541 will
take 4 bits of data and expand it into 5 bits (8 bits into 10).
This is done to insure that there is never more than two
consecutive O's on the disk.

FILE - A file is a group of blocks of information. Information
may be stored on a disk in Program fi1es t Sequential fi1es t

User fi1es t Relative fi1es t Random files or the Directory fi1~.
The disk files are similar to the files contained in a file
cabinet t they contain any information that you wish to store in
them.

FORMAT - Most small computers use the same floppy disks. The
only difference between the disks is the way that the disk
drive stores the information on the disk. The method that each
disk drive uses to store its information is called the format.
When a disk is formatted the disk is completely erased t a new
1.0. number is placed on each sector and the disk is re-named.

HALF TRACKS - Data is stored on the disk in concentric circles
called tracks. Each track is approximately 0.020 inches apart t
center to center. Half tracks is a method whereby the data is
stored in between the tracks. On the 1541 the data may only be
reliably stored on the track or on the half tracks. The
read/write head is too wide to permit the use of adjacent
tracks and half tracks.

HEADER - The header is the part of a sector that contains the
disk I.D. t checksum t sync marks and other special information
that the disk drive needs. The header and the block make-up one
sector.

HEX - Hexadecimal. This is a numbering system based upon the
number 16. This system uses 16 different digits t whereas the
decimal system uses 10. Hex is a convenient numbering system to
work in when you are using the computer.

PPMII DEFINITIONS PAGE 275

INTERRUPT - This is a process whereby the microprocessor may be
forced to suspend its normal operation and begin another
operation. The microprocessor will first complete the command
that it is currently being processed and then it will service
the interrupt. Three normal type of interrupts are: NON
MASKABLE INTERRUPT, INTERRUPT REQUEST and the BREAK
INSTRUCTION. A RESET of the computer will also force the
microprocessor to suspend its normal operation.

I/O - Refers to the terms INPUT and OUTPUT. I/O is generally
used to refer to the communication between two (or more)
computer chips or peripherals. It may also be used when you
have bought more computer equipment that you can afford (I
owe).

NON-STANDARD SECTORS - Any deviation from the normal sector
pattern of the 1541 format. Normally the sectors will be in
sequential order (0-20). Tracks 1-17 will have 21 sectors each,
tracks 18-24 have 19 sectors each, tracks 25-30 have 18 sectors
each and tracks 31-35 have 17 sectors each. Duplicate sectors,
displaced sectors, extra sectors or missing sectors all may be
considered non-standard sectors.

NYBBLE COUNTING - This term is a carryover from the APPLE
computers. Actually, on the 1541 disk drive we count bytes (8
bits) not nybbles (4 bits). Nybble counting refers to the
actual number of bytes on a track. The number of bytes contain
on a track will vary depending upon drive speed, the brand of
disk used, temperature, humidity etc. Even the best of disk
drives will show a v~riation in the number of bytes written to
a track.

PLA - PROGRAMMABLE LOGIC ARRAY - The memory management chip in
the C-64. The PLA will control which section of memory that the
6510 microprocessor will access. The PLA can configure memory
so that the 6510 microprocessor can have access to ROM or RAM
at the same memory location (although only RAM or ROM may be
accessed at anyone time).

RAM - Random Access Memory: This is the part of your computer's
memory that may be changed to suit a particular need (Games,
Word Processing, etc.). Ram will contain the BASIC program or
the ML instructions to perform specific tasks.

RESET - A hardware method where by the operation of the
microprocessor is immediately suspended. This may be
accomplished by momentarily grounding the RESET line to the
microprocessor.

'"

PPMII DEFINITIONS PAGE 276

./

ROM - Read Only Memory: This is the part of yo~r computer's
memory that is a permanent part of the computer. ROM cannot be
changed, modified or erased. The ROM in your computer allows
you to turn on the computer and begin typing, it also controls
most of the internal functions of the computer. ROM may be
thought of as the computer's brains.

R/W HEAD - READ/WRITE HEAD - This is the actual mechanism that
reads data from the disk or writes data to the disk.

SECTOR - A subdivision of a track. Each track is divided into
many smaller parts, each part is referred to as a sector. The
sector will contain the header and the block. It is where the
disk drive will store the information. The sector will also
contain the 1.0. number of the disk, error checks (checksum),
sync marks and its special identification numbers. The number
of sectors per track varies with the size of the track. Outer
tracks, 1 thru 17, have 21 sectors, tracks 18 thru 24 have 19
sectors, tracks 25 thru 30 have 18 sectors and tracks 31 thru
35 have 17 sectors.

SYNCHRONIZED TRACKS - Tracks that were written in alignment to
a particular reference point. Usually this is done on a disk
drive that starts writing each track immediately after the
timing hole on the disk breaks a photo-electric beam. The 1541
does not use the timing hole as a reference point. Usually this
technique is performed on a programmable disk duplication
machine.

SYNC MARK - A special sequence of bits stored on a track that
synchronizes the data that follows it to the READ/WRITE
circuitry of the disk drive. On the 1541 disk drive 40 '1' bits
are used to provide a sync mark.

SPIRAL TRACKING - SEE TRACK ARCING - A variation of the track
arcing technique whereby the data is written out across several
tracks and half-tracks. Each track or half track contains only
a small amount of data. This insures that there will not be any
cross talk between the adjacent tracks and half tracks. The
tracks are not true1y spirals, they are actually a 'stepped
spiral '. Spiral tracking is another variation of synchronized
tracks. If the programmer knows how the data on the various
tracks has been written out, the programmer may write a
variation of the synchronized track routine to read the data
back in.

TRACK - A concentric ring (circle) used for storing information
on the disk. There are 35 tracks on the 1541 format. Track 1 is
the outter-most, track 18 contains the BAM and directory and
track 35 is the innermost. Although only 35 tracks are used by
the 1541 most drives are capable of using 40.

PPMII DEFINITIONS PAGE 277

TRACK ARClNG - This refers to a technique that writes out a few
sectors of data to a track, then the R/W head of the disk drive
is stepped 1/2 track, a few more sectors are written. Because
the data on the track and the adjacent half track are not side
by side there will not be any problems in reading the data that
was written. Track arcing uses routines similar to synchronized
tracks and spiral tracking. .
UNDOCUMENTED OPCODES - These are opcodes that actually do cause
the microprocessor to perform a specific function. While the
function does indeed get performed, the· manufacturer will not
guarantee that every chip will perform the same function for a
given opcode.

PPMII DEFINITIONS PAGE 278

CO~YRIGHT NOTICE

PROGRAM PROTECTION MANUAL FOR THE C-64 VOLUME II
COPYRIGHT 1985 (C) BY CSM SOFTWARE INC
ALL RIGHTS RESERVED - ...• :~gJ1l;,..W!!f!'!fi:'·i'"' :,~

.:i'",;<):.:"f~ ;;"'fi!:~? ~ ",:" , -':,'
This manual and the computer progr~ms on the accdmp~~~;ft9Ppydisks, which .Pe
described by this manua1,are'copy'righted and contain propi-1etary information:
belong; ng- to CSM SOFTWARE INC • ' . .
No one may give or'se1l copies of this manual or the accompanying disks or of the
listings of the programs on thepisks to any person or institution, except as,
prOVided for by the written agr~ent withCSM SOFTWARE INC. .. . '.

',< " ~ ,J,~. ,.,:»>'....., '

No one may copy, .photocopy; reproduce, translate this m.anual or red~e it t".:
machine readabl~ form, in whole or-.,in part, without thl! prior written Conse-Il'tof
CSM '. SOFTWf\RE I.~ec~. • ..p ~

WARRANTY AND LIA~ t ~ rr~)
c '.

ff "•.

Neither C~M.SOFTWARE INC., nor any dealer or distributor makes any warranty,
_~ 'express .or i~plied, with respect ta this manual, the disk or any related item,

" , thetrq~lity~\ performance, .merchantability, or fitness for any purpose. It is
.·~t . ,thlf;~~:s'~bilfty solely 'of the purchaser to determine the suitability of these
~:~~rlfurany:~Ul"pos~. "
~~;~. '~, +'1,' ~9c<.'.~ <~'~_ .~ ~'. .", ,:>:~ ~,_ ".' . ~ ~~.,"

~t:.:l¢:l(~ ca$ei't{ill •.l$OFTWARE 1NC. be held liable for direct, in~1r~ct or ,
~i" ,,·;nc;~ttalt;lama:~~·.te$Ulting from''8ry.defec~ or.omissi·on in the manual, the'di'sk
F'i.,<;,::",Or other ·re,hted ltems and processes, lncludlng , but nQ~ limited to, any ,
~;!~.~:'.;~~Jnt&ri'lJPt'i~n Q,f service, loss of business, anticipated profit, or other
~:,-i'· conseqtlf!ntl a1 damages. ' .
~/(: .,,- ~~ -~_ h~ . _~ • '"'.," ' •

0:,::"',. TH!sc'it~tEMEtft'Qf LIMITED LIABILITY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS':>- 'nR ;t~~)£Ut 1;mtJ[);~~ WARRANTIES OF MERCHAHTABILITY AND FITNESS FOft A PARTIClJLAR
~~: PURPOSE.. CSM. SOPfWARE IN:'~ will not. assume any other warr.~1qtot H ab1J tty. Nor'
f:' ·do they authorize any other person to assume any other warranty or 1i ahi1 ity for
~'. them, 1rf connection with.the sa1e,ef:th~ir ~roducts. ,';" ~. ", '
4' '.,>' ~ ~. ' I:X:,l

UPDATES AND. REVISIONS
~

.•. ':'"
.~~~ . ., ,

CSM SOfTWARE',INC.:reserves the right to Correct and/or improve tfJh manual ami;,
>, / the related disk ,at any time without notice and without responsibility t.~.ide

these changes.to prjor purchasers of the program.

I~PORTANT NOTICE
, "

THIS PRODUCT IS SOLO' SOLE~LY FOR THE ,ENTERTAINMENT AND EDUCATION,· OF THE PURCHASER.
IT IS ILlEGAL TO SELL OR DISTRIBUTE COPIES OF COPYRIGHTED PROGRAMS. THIS PR'ODUCT
DOES NO'! CONDONE SOFTWARE PIRACY NOR DOES IT CONDONE ANY OTHER ILLEGAL ACT. '

~,
1,,,,;"" ' ~. __ ~ .._,_,;...,..,... tr"Jerr" >. tr'ffl
~......... , ~'-"._.-"--~"-__ L"
-.'-'- -~----'...

